FINAL PERFORMANCE REPORT

FEDERAL AID GRANT NO. T-16-P-1 FAUNAL SURVEY OF OKLAHOMA CAVE AND SPRINGS OKLAHOMA DEPARTMENT OF WILDLIFE CONSERVATION June 1, 2004 through May 31, 2008

FINAL REPORT

State: Oklahoma

Grant Number: T-16-P-1

Grant Program: State Wildlife Grant

Grant Name: Faunal Survey of Oklahoma Caves and Springs

Grant Period: June 1, 2004 - May 31, 2008

Reporting Period: June 1, 2004 – May 31, 2008

A. Abstract:

General biological inventories of caves, springs, and other subterranean habitats were performed in at least 101 sites throughout Oklahoma from 2004 to 2008. Additionally, 50 springs throughout Oklahoma were intensively studied and their biological and physio-chemical properties analyzed from 2003 to 2008. The objectives of these studies were: to describe the biodiversity of animal life in subterranean habitats of Oklahoma; to determine the status and distribution of rare and endangered animals in these habitats; to examine habitat variables to determine zoogeographic patterns in subterranean diversity and to rank the inventoried sites in order of biological importance; to provide this information to ODWC to facilitate conservation planning.

Very few cave habitats had a species richness greater than 20 taxa. The most species-rich cave habitats were the cave AD-14 with 80 taxa, and GR-011and DL-39, both with 63 taxa. Species richness in springs was significantly greater because of their connectivity with surface ecosystems. Numerous rare and endangered species utilize subterranean habitats in Oklahoma. There are at least 40 species that are known to be limited to, or adapted to, groundwater habitats (stygobites) or caves (troglobites), including 8 new species that await taxonomic description. The most common subterranean-obligate was grotto salamander (*Eurycea spelaea*) and the second was cave isopod (*Caecidotea* sp.). Overall, arthropods dominated the cave habitats, especially crickets, mosquitoes, spiders, and springtails. The most common invertebrate taxon was cave crickets of the genus *Ceuthophilus*. The most common vertebrates were eastern pipistrelle bat (*Periomyotis subflavus*) and cave salamander (*Eurycea lucifuga*). An accumulation curve was generated, which indicated that sampling effort to date has detected the majority of total species that can be found in cave habitats of Oklahoma, and that future bioinventories will add more species to this cumulative list, but probably at an exponentially slower rate.

Habitat variables data were collected during the fieldwork at each site; these data were compared to each cave site's total species richness and obligate richness to discern any biodiversity patterns. Richness of a cave was directly proportional to its passage length; the longest caves are the most-biologically rich. This constitutes a significant management challenge, as the longest caves are usually the most attractive for recreational caving. Richness was also higher in cave sites with organics present

(especially bat guano), when subterranean streams were present, and when sites had regulated access (especially by gating). However, frequent public use or the presence of vandalism did not correlate to lower richness measurements. Caves were ranked in biological importance using 3 variables: site length, total species richness, and obligate richness. Cave AD-14 ranked highest in Oklahoma, and cave DL-39 was second.

The intensive surveying of 50 springs revealed that Oklahoman springs have a diverse biota, especially with respect to invertebrates (primarily insects); over 200 taxa were found. Spring faunas consist of a combination of generalists species, which are commonly found in area ponds and/or streams, spring specialists (including endemics), and occasional subterranean-obligate crustaceans. Aquatic worms, fly larvae (chironomids and ceratopogonids), water striders, fingernail clams, and pond snails are all common in ponds and streams – as well as in springs. Although Arbuckle and Ozark springs are both limestone-based, their invertebrate faunas are different. In contrast, the invertebrate faunas of Arbuckle and High Plains springs are similar although the High Plains springs are mostly sand-based rather than limestone-based. These results highlight the distinctiveness of the Ozark and Arbuckle faunas.

B. Need:

The study of cave and spring faunas is important because of their connection with groundwater and mineral resources, their interest to science, and their rarity. Groundwater supplies 62% of the overall water demands of the United States (Job and Simons, 1994). In Oklahoma, groundwater is withdrawn at an estimated rate of 960 million gallons per day and accounts for over half of the total freshwater withdrawal (Tortorelli, 2002). Despite this high use of groundwater, little is known about groundwater ecosystems (Job and Simons, 1994). In addition to the extensive use of groundwater by humans, groundwater provides crucial ecological services, such as providing a reliable water source for springs and rivers, and altering the mineral and organic content of waters.

Groundwater habitats tend to have highly endemic faunal communities, with many species found only in a single cave or groundwater system. Approximately 90% of cave/groundwater communities have not been surveyed (Culver and Hobbs III, 2000). Cave-limited fauna (troglobites) and ground-water limited fauna (stygobites) represent more than half of the imperiled (G1-G2) animal species listed in the Natural Heritage Program, and include several species in the ODWC Species of Greatest Conservation Need yet, nationally, less than 4% of these species have federal protection status (Culver *et al.* 2000, NatureServe 2002).

Groundwaters produce springs where they reach the surface. Springs contain a combination of spring-adapted, stream-generalist, and groundwater-adapted species and, as a consequence, several spring-dwelling species are included in the ODWC Species of Greatest Conservation Need.

Groundwater, cave, and spring faunas generally share the same threats. Foremost among these is groundwater withdrawal, which destroys these habitats through direct

dewatering. Nutrient and toxic pollutants are localized problems which especially affect groundwaters in limestone regions, such as the Ozark Plateau and Arbuckle Range in Oklahoma, because of direct input of chemicals through sinkholes and disappearing streams. Human disturbances, such as trampling and modification of springs, also impact these habitats and their faunas.

In order to conserve springs, caves, and groundwater habitats and their associated fauna, there is a clear need of additional information on the distribution, ecology, and taxonomy of the fauna of these habitats. This proposed project addresses this need by investigating key subterranean and spring habitats; these habitats will be surveyed through species censuses; and the status, distribution, and taxonomy of rare species will be updated.

Among the target species of this bioinventory are several crustaceans, including cave and spring/stream dwelling crayfishes, and cave amphipods and isopods. Cave crayfish in the Ozarks of particular interest because both Cambarus tartarus and C. subterraneus have very limited known distributions; yet the identification of the cravfish in some Oklahoma caves is unresolved and additional surveys may allow identification of these undetermined crayfish. Also of interest is the federally endangered Benton Cave Crayfish (Cambarus aculabrum), which occurs on the Oklahoma/Arkansas border in the Illinois River watershed, but has not been documented in Oklahoma. Investigation of caves in the Oklahoma portion of this watershed should indicate whether C. aculabrum occurs in the state. Vertebrates on the target list include the Ozark cavefish and spring dwelling darters, and salamanders found in caves and springs. While the populations of federally threatened Ozark cavefish (Amblyopsis rosae) have been surveyed regularly in Arkansas and Missouri, censuses of most cavefish habitats in Oklahoma are a decade old. This study will help bring the Oklahoma censuses up to date, which will contribute to recovery efforts of this species. Most other species encountered will also be inventoried, and this data will provide information on associates of rare species and information on the distribution of cave- and spring- inhabiting species in the state.

C. Objectives:

The objectives of this project are:

- conduct field surveys of caves and springs, especially in the Ozark and Arbuckle regions of Oklahoma,
- update the status, distribution, and taxonomy of rare cave and spring species in Oklahoma,
- provide information needed for conservation planning for several current and potential Species of Greatest Conservation Need.

D. Approach:

Cave Bioinventories

In each cave surveyed, fauna were inventoried using the most unobtrusive methods possible and at times when bats were not hibernating or birthing. Vertebrates and macroscopic invertebrates were counted visually with helmet-mounted lights, using snorkeling gear and dive lights for deep pools. Collections were limited to those fauna

that were impossible to identify on site, and where permitted. Voucher specimens were collected by hand, aspirator, or net, and brought back to the Oklahoma Biological Survey for preservation, cataloging, and identification or shipment to taxonomists. The cobble substrate of streams derived from spring sources was examined through "cobble sifting", in which rocks are placed into mesh sieves and moved around and examined for organisms. The mouths of some springs were fitted with temporary drift nets to capture subterranean fauna expelled by the flow of the spring (a method whose efficacy was shown in surveys of groundwater invertebrates of the Edwards Plateau in Texas). Drift nets were set and checked every two to three hours.

At each site, the following habitat parameters were determined and recorded:

- Site category "Bluff Shelter", "Cave", "Crevice/Talus", "Hyporheos", "Mine", "Pit", "Sinkhole", "Spring", "Well", or "Unknown";
- Degree of use by the public (primarily recreational caving) "None", "Light", "Moderate", "Heavy", or "Unknown";
- Presence or absence of vandalism: "No" (including "Unknown") or "Yes" (defined as evidence of looting, presence of trash litter, campfire smoke residue, graffiti, animal injury, or damage to speleothems);
- Presence or absence of organics: "No" (including "Unknown") or "Yes" (defined as presence of bat guano or other feces, leaf litter, woody debris, etc.)
- Presence or absence of bat guano: "No" (including "Unknown") or "Yes" (defined as a significant accumulation, such as evidenced by a "guano pile", strong smell of urine/ammonia, or majority of surfaces covered)
- Subterranean water resource category that was dominant at the site "Dry", "Drip Pool", "Intermittent Stream", "Perennial Stream", or "Unknown"; entrance to site gated (including fenced) – "yes" or "no"
- Degree of public access: "Unrestricted" (access uncontrolled; visitation not necessarily sanctioned by landowner); "By Permit Only" (permission by landowner must be obtained before entry); "Scientific Study Only"; "Closed or Sealed" (entrance sealed shut)
- Site landowner category: "Federal"; "State" (included counties and municipalities), "NGO" nongovernmental organization (e.g., church, not-for-profit entity, land trust)", "Commercial" (owned by a business / fee charged to enter cave), "Private", or "Unknown"
- Site geologic unit (surficial geologic unit was determined using geographical information system software and digital USGS geologic maps).
- Site length (in meters): total mapped cave horizontal passage length; default length for wells and springs having no humanly-accessible horizontal extent was 1 m (this data was obtained primarily from unpublished data of members of the National Speleological Society).

Cavefish and Cave Crayfish Censuses

In caves with cavefish or cave crayfish, faunal censuses were performed using established methods (Graening and Brown, 2000). Surveyors moved slowly upstream and counted individuals as they were sighted, using helmet lights and powerful SCUBA lights. This method is understood to produce fairly reliable quantitative population information with minimal impact on the cave habitats and their inhabitants.

Spring Inventories

Methods used to sample springs followed those used by Bergey (2002) and included the following components:

• Site description, including TRS coordinates, GPS readings, a site sketch, photos, local land use, modifications of the spring, and directions for re-finding the site.

- Discharge information (flow width, depths, and mean velocities). Velocity was measured with a Marsh-McBirney electromagnetic flowmeter.
- An owner questionnaire, used to get information on land use changes, changes in discharge, and historical use of springs (when possible).
- Fish sampling, using seines or dipnets. Only one or two fish of each species were collected. Dr. William Matthews (Department of Zoology, University of Oklahoma) verified identifications and specimens will be deposited at the Sam Noble Oklahoma Museum of Natural History at OU.
- Invertebrates sampling, using hand nets for qualitative sampling and a small corer for quantitative sampling. Samples were preserved in the field and returned to the Bergey laboratory for sample sorting and invertebrate identification.

Taxonomy

Collected specimens were identified at the University of Oklahoma by the authors, or sent to taxonomic specialists, including: Dr. Jeffrey Barnes (UAF Dept. of Entomology) for dipterans and other Insecta, Dr. Kenneth Christiansen (Grinnell College) and Dr. Jeffrey Battigelli (Earthworks Research Group) for collembolans; Dr. Horton Hobbs III (Wittenburg University) for decapods; Dr. John Holsinger (Old Dominion University) for amphipods; Dr. Jerry Lewis (Lewis Consulting) for isopods and diplopods; Dr. Jeffrey Battigelli for acari; Dr. William Muchmore (University of Rochester) for pseudoscorpions; Dr. Henry Robison (Southern Arkansas University) or Dr William Matthews and staff at the Oklahoma Museum of Natural History (University of Oklahoma) for fishes; Dr. Stewart Peck (Carleton University) or Dr. John Epler (Independent consultant) for coleopterans; Dr. James Cokendolpher (Museum of Texas Tech University) and Dr. Darrell Ubick (California Academy of Sciences) for opilionids; Dr. Lynn Ferguson (Longwood College) and Mark Muegge (Texas Cooperative Extension) for diplurans; Dr. Gerald Walsh for gastropods; and Dr. Theodore Cohn (University of Michigan) for orthopterans, Dr. Peter Adler (Clemson University) for dipterans, Dr. Donald Klemm (USEPA-Cincinnati) for leeches. Adult aquatic insects were sent to Dr. Boris Kondratieff (Colorado State University) for mayflies and stoneflies and Dave Ruiter (EPA, Colorado) for caddisflies. Collected specimens will be curated in the US National Museum, the Oklahoma Biological Survey, or the Sam Noble Oklahoma Museum of Natural History, or they reside in the personal collections of taxonomists.

Permits held by Dr. Graening:

- Oklahoma Department of Wildlife Conservation Scientific Collector's Permit 3982;
- USFWS Special Use Permit 43590 HLB-1-01; and
- USFWS Recovery Permits RT-834518, TE834518-1, TE834518-2, and TE834518-3.

Permits held by Dr. Bergey

- Oklahoma Department of Wildlife Conservation Scientific Collector's Permit 3571;
- University of Oklahoma, project-specific approved AUS protocols; file number R04-010 (for working with cave/spring fishes and salamanders)

Location

This project focused primarily on the limestone (karst) areas of Oklahoma, which are the Ozark Plateau (e.g., Adair, Delaware and Ottawa Counties) and the Arbuckle Range (e.g., Murray County and Pontotoc County), with their relatively high densities of caves and springs. Previous spring and cave surveys have concentrated primarily on the Ozarks and relatively little work has been done in the Arbuckles. Other appropriate areas in the state that include suitable habitat for cave and spring -associated species (e.g., the Ouachita Mountains) were included as time and site access permitted.

E. Results and Discussion:

Because of the differences in methods and types of data collected, the two subsections – Part 1 Cave Survey and Part 2 Spring Survey - are presented separately.

Part 1. Cave Survey.

Bioinventory Effort

For this grant period (6/2004 to 6/2008), 219 inventory events (including some repeated trips) were been performed in 101 subterranean sites in Oklahoma. This does not include 41 springs that were intensively studied by Dr. Bergey. The locations of these 101 subterranean habitats are shown graphically in Figure 1 (gray squares). Appendix 1 summarizes the faunal inventory checklists generated during this grant period.

This ODWC-funded study is part of a larger biodiversity study – the Subterranean Biodiversity Project, which started in 1999. Data generated from this study was pooled with other data from the Subterranean Biodiversity Project and previous studies from other authors. This combined data set produced the following: 5,122 total faunal occurrence records in subterranean sites in Oklahoma, with dates spanning from 1924 to 2007; 289 inventory events performed in 458 sites (including some repeated inventories); and a faunal checklist of approximately 750 unique taxa, including morphospecies not defined to the generic or specific level.

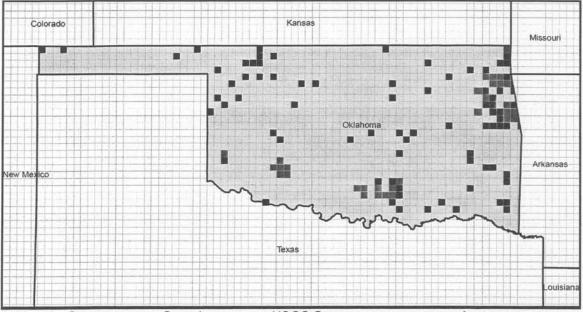


FIGURE 1. SUBTERRANEAN SITES LOCATED BY USGS QUADRANGLE THAT WERE INVENTORIED IN THIS ODWC STUDY (GRAY SQUARES) AND OTHER STUDIES (BLACK)

Site-specific Biodiversity Estimates

Very few caves site had a species richness greater than 20 taxa; the number of sites decreases exponentially as the richness increases (Figure 2).

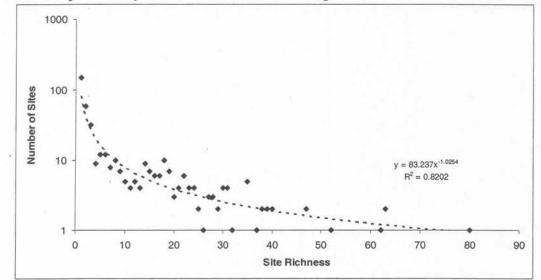


FIGURE 2. EXPONENTIAL RELATIONSHIP BETWEEN RICHNESS AND NUMBER OF SITES HAVING THAT RICHNESS

All of the subterranean sites were ranked by species richness; springs were excluded because their connectivity with surface habitats inflates their site richness with species that are not strongly associated with subterranean ecosystems. Table 1 lists the top 40 most species-rich subterranean sites (primarily caves) in Oklahoma. The most species-rich cave currently is AD-14 with 76 taxa, with Jester Cave and the J. Selman Cave System very close behind (75 and 69 taxa, respectively).

Richness	Site Name (or Code)	County
76	AD-14	Adair
75	Jester Cave	Greer
69	J. Selman Cave System	Woodward
63	DL-39	Delaware
63	CZ-9	Cherokee
47	MU-2	Murray
47	DL-91	Delaware
39	AD-19	Adair
38	AD-7	Adair
37	DL-3	Delaware
35	DL-8	Delaware
35	DL-41	Delaware
34	AD-8	Adair
33	Nescatunga Cave	Major
32	AD-137	Adair
31	AD-9	Adair
31	DL-32	Delaware
31	Coal Creek Cave	Pontotoc
30	DL-102	Delaware
30	DL-148	Delaware
30	AD-15	Adair
28	DL-59	Delaware
27	SQ-1	Sequoyah
25	WA-012	Washita
25	AD-29	Adair
25	CZ-18	Cherokee
24	DL-38	Delaware
23	OT-4	Ottawa
23	CZ-11	Cherokee
22	DL-79	Delaware
22	CZ-12	Cherokee
22	Doolin Cave	Seminole
21	Washita Bat Caves	Washita
21	DL-51	Delaware
21	Lost Turtle Cave	Adair
20	AD-13	Adair
20	CZ-19	Cherokee
19	Little Crystal Cave	Murray
19	DL-1	Delaware
19	AD-17	Adair
19	AD-220	Adair

TABLE 1. TOP 40 MOST SPECIES-RICH CAVES IN OKLAHOMA

Rare Species

Numerous rare and endangered species utilize subterranean habitats in Oklahoma. Table 2 lists these species (taxa awaiting species description are not listed), where "rare" is defined as a species having a Natural Heritage / NatureServe ranking of G1, G2, S1, or S2 (see <u>http://www.natureserve.org/explorer</u> for an explanation of the ranking system and further data). There are at least 40 known subterranean-obligates in Oklahoma (Table 3), including 8 new species that await taxonomic description. Culver et al. (2000) reported 27 subterranean-obligates from Oklahoma – we expanded the list to 40. In Oklahoma, the most common troglobite was grotto salamander (*Eurycea spelaea*) with at least 74 occurrences in 43 sites (second most common were cave isopods [*Caecidotea* sp.]). In the USA, the most common obligate reported was a cave dung fly (*Spelobia tenebrarum*) found in at least 50 counties and 12 States (Culver et al. 2000).

Scientific Name	Common Name	ESA Status	Global Rank	State Rank
Allocrangonyx pellucidus*	Oklahoma Cave Amphipod	Not Listed	G2G3	S1?
Amblyopsis rosae*	Ozark Cavefish	Threatened	G2G3	S1
Arrhopalites jay*	Cave Globular Springtail	Not Listed	G2G3	SNR
Bactrurus hubrichti*	Kansas Well Amphipod	Not Listed	G4	S2?
Caecidotea acuticarpa*	Cave Isopod	Not Listed	G2G3	SNR
Caecidotea adenta*	Cave Isopod	Not Listed	G1G2	SNR
Caecidotea macropropoda*	Bat Cave Isopod	Not Listed	G2G3	SNR
Caecidotea oculata	Water Slater	Not Listed	G2G3	SNR
Caecidotea simulator*	Springfield Plain Groundwater Isopod	Not Listed	G2G3	SNR
Cambarus subterraneus*	Delaware County Cave Crayfish	Not Listed	G1G2	S1
Cambarus tartarus*	Oklahoma Cave Crayfish	Not Listed	G1G2	S1
Coragyps atratus	Black Vulture	Not Listed	G5	S2B
Corynorhinus townsendii ingens	Ozark Big-eared Bat	Endangered	G4T1	S1
Etheostoma craginii	Arkansas Darter	Candidate	G3	S2
Eurycea lucifuga	Cave Salamander	Not Listed	G5	S2S3
Miktoniscus racovitzai*	Racovitza's Cave Isopod	Not Listed	G3G4T1T2	SNR
Myotis grisescens	Gray Bat	Endangered	G3	S2
Myotis leibii	Eastern Small-footed Bat	Not Listed	G3	S1
Myotis lucifugus	Little Brown Bat	Not Listed	G5	S1
Myotis septentrionalis	Northern Long-eared Bat	Not Listed	G4	S2
Myotis sodalis	Indiana Bat	Endangered	G2	S1
Myotis yumamensis	Yuma Myotis (Bat)	Not Listed	G5	S1
Orconectes meeki	Meek's Crayfish	Not Listed	G4	S2S3
Plethodon angusticlavius	Ozark Zigzag Salamander	Not Listed	G4	S2
Plethodon ouachitae	Ouachita Salamander	Not Listed	G2G3	S2
Pseudosinella dubia*	Cave Springtail	Not Listed	G1G2	SNR
Rana palustris	Pickerel frog	Not Listed	G5	S2S3
Spilogale putorius	Eastern Spotted Skunk	Not Listed	G5	S2
Stygobromus bowmani*	Bowman's Cave Amphipod	Not Listed	G1G2	S1?
Stygobromus ozarkensis*	Ozark Cave Amphipod	Not Listed	G3G4	S1
Stygobromus onondagaensis*	Onondaga Cave Amphipod	Not Listed	G1	SNR
Vulpes velox	Kit Fox	Not Listed	G3	S1

TABLE 2. RARE AND ENDANGERED SPECIES REPORTED IN SUB. HABITATS OF OKLAHOMA

Note: Asterisk (*) indicates that the species is adapted or restricted to subterranean habitats.

Scientific Name	Common Name	Global Rank	State Rank	# of Sites
Allocrangonyx pellucidus	Oklahoma Cave Amphipod	G2G3	S1?	18
Amblyopsis rosae	Ozark Cavefish	G2G3	S1	13
Amerigoniscus centralis	Cave Isopod	GNR	SNR	1
Arrhopalites jay	Cave Globular Springtail	G2G3	SNR	2
Arrhopalites sp. nov.	New Species of Globular Springtail	GU	SU	1
Bactrurus hubrichti	Kansas Well Amphipod	G4	S2?	2
Caecidotea acuticarpa	Cave Isopod	G2G3	SNR	20
Caecidotea adenta	Cave Isopod	G1G2	SNR	1
Caecidotea ancyla	Cave Isopod	G3G4	SNR	9
Caecidotea antricola	Cave Isopod	G5	SNR	2
Caecidotea mackini	Long's Cave Isopod	GNR	SNR	1
Caecidotea macropropoda	Bat Cave Isopod	G2G3	SNR	6
Caecidotea simulator	Springfield Plain Groundwater Isopod	G2G3	SNR	6
Caecidotea steevesi	Steeves' Cave Isopod	G3G4	SNR	3
Caecidotea stiladactyla	Cave Isopod	G3G4	SNR	9
Cambarus subterraneus	Delaware County Cave Crayfish	G1G2	S1	4
Cambarus tartarus	Oklahoma Cave Crayfish	G1G2	S1	3
Causeyella sp.	Cave Millipede	GU	SU	2
Chaetaspis sp.	Cave Millipede	GU	SU	1
Chaetaspis sp. nov. # 2	New Species of Cave Millipede	GU	SU	1
Crosbyella sp.	Cave Harvestman	GU	SU	7
Eurycea spelaea	Grotto Salamander	G4	S3	43
Hesperochernes occidentalis	Cave False Scorpion	G4G5	SNR	2
Islandiana unicornis	Cave Spider	G3G4	SNR	1
Japygidae	Two-pronged Bristletail	GU	SU	3
Litocampa sp.	Cave Two-pronged Bristletail	GU	SU	5
Litocampa sp. nov.	New Species of Cave Two-pronged Bristletail	GU	SU	1
Miktoniscus racovitzai	Racovitza's Cave Isopod	G3G4T1T2	SNR	1
Nesticus pallidus	Cave Spider	GNR	SNR	3
Nicoletia sp.	Cave Silverfish	GU	SU	2
Porrhomma cavernicola	Appalachian Cave Spider	G4G5	SNR	1
Pseudosinella dubia	Cave Springtail	G1G2	SNR	1
Pseudosinella sp. nov. # AB	New Species of Cave Springtail	GU	SU	1
Spelobia tenebrarum	Cave Dung Fly	GNR	SNR	2
Stygobromus alabamensis	Alabama Cave Amphipod	G4G5	SNR	24
Stygobromus bowmani	Bowman's Cave Amphipod	G1G2	S1?	1
Stygobromus onondagaensis	Onondaga Cave Amphipod	G1	SNR	9
Stygobromus ozarkensis	Ozark Cave Amphipod	G3G4	S1	13
Stygobromus sp. nov.	Arbuckle Mountains Cave Amphipod	GU	SU	1
Trigenotyla blacki	Black's Cave Millipede	GNR	SNR	5

TABLE 3. SUBTERRANEAN-OBLIGATE ANIMALS OF OKLAHOMA. AT LEAST 40 SPECIES ARE KNOWN TO BE LIMITED TO, OR ADAPTED TO, GROUNDWATER HABITATS (STYGOBITES) OR CAVES (TROGLOBITES) OF OKLAHOMA. Based upon the findings of this study, we suggest changes to Natural Heritage / NatureServe global and subnational (or "state") ranks as summarized in Table 4.

and the second	(NEW) TO C	JLD HAN	KS		
Taxon	Common Name	Old G	New G	Old S	New S	Comment
		rank	rank	rank	rank	a second property in the second se
Achaeranea tepidariorum	Common House Spider	GNR	G5	SNR	S5	Common in USA
Acris crepitans blanchardi	Blanchard's Cricket Frog	G5T5		SNR	S5	Common in OK
Allocrangonyx pellucidus	Oklahoma Cave Amphipod	G2G3	G2	S1?	S2	Known from less than 200 individuals & 18 sites
Amblyopsis rosae	Ozark Cavefish	G2G3	G2	S1		Known from less than 300 individuals
Ameiurus melas	Black Bullhead Catfish	GNR	G5	SNR	S5	Common in OK
Ameiurus natalis natalis	Yellow Bullhead Catfish	GNR	G5	SNR	S5	Common in OK
Amerigoniscus centralis	Cave Isopod	GNR	G1	SNR	S1	Single-site endemic
Argiope aurantia	Yellow Garden Spider	GNR	G5	SNR	S5	Common in OK
Arrhopalites jay	Cave Globular Springtail	G2G3	G1	SNR	S1	Found in only 2 sites in the world
Bactrurus hubrichti	Kansas Well Amphipod	G4		S2?	S1	Found in only 2 sites in OK
Caecidotea acuticarpa	Cave Isopod	G2G3	G1	SNR	S1	Known from less than 100 individuals
Caecidotea adenta	Cave Isopod	G1G2	G1	SNR	S1	Found in only 2 sites in the world
Caecidotea ancyla	Cave Isopod	G3G4	G3	SNR	S2	Endemic to Ozarks, rare in Ok
Caecidotea antricola	Cave Isopod	G5	G3	SNR	S1	Endemic to Ozarks, rare in Ok
Caecidotea communis	Water Slater	GNR	G4	SNR	S1	See Graening et al. 2008
Caecidotea mackini	Long's Cave Isopod	GNR	G1	SNR	S1	Single-site endemic
Caecidotea macropoda	(delete this element macropropoda - J. I			of C.	72	See Graening et al. 2008
Caecidotea macropropoda	Bat Cave Isopod	G2G3	G2	SNR	S1	See Graening et al. 2008
Caecidotea oculata	Water Slater	G2G3	G1	SNR	S1	See Graening et al. 2008
Caecidotea simulator	Springfield Plain Groundwater Isopod	G2G3	G3	SNR	S2	See Graening et al. 2008
Caecidotea steevesi	Steeves' Cave Isopod	G3G4	G3	SNR	S1	See Graening et al. 2008
Caecidotea stiladactyla	Cave Isopod	G3G4	G3	SNR	S2	See Graening et al. 2008
Cambarus subterraneus	Delaware County Cave Crayfish	G1G2	G1	S1		Found in only 4 sites in the world
Cambarus tartarus	Oklahoma Cave Crayfish	G1G2	G1	S1		Found in only 3 sites in the world
Ceuthophilus gracilipes	Cave Cricket	GNR	G5	SNR	S5	Common in eastern USA
Crangonyx forbesi	Amphipod	GNR	G3	SNR	S2	See Graening et al. 2006
Crangonyx pseudogracilis	Sideswimmer	GNR	G5	SNR	S2	See Graening et al. 2006
Crosbyella spinturnix	Harvestman	GNR		SNR	S1	Found in 3 caves in OK
	Sow Bug	GNR	G5	SNR	SNA	

TABLE 4. CURRENT (OLD) GLOBAL (G) RANKS ANS STATE (S) RANKS AND SUGGESTED CHANGES (NEW) TO OLD RANKS

Taxon	Common Name	Old G	New G	Old S	New S	Comment	
		rank	rank	rank	rank		
Dendrocoelopsis americana	Cave Flatworm	G3G4		SNR	S2	Found in 6 caves in OK	
Dugesia dorotocephala	Flatworm	GNR	G5	SNR	S5	Common in eastern USA	
Elaphe guttata emoryi	Great Plains Rat Snake	G5T5		SNR	S5		
Eurycea longicauda melanopleura	Dark-sided Salamander	G5T4		SNR	S3	Known from 24 caves in OK	
Eurycea lucifuga	Cave Salamander	G5		S2S3	S3	Known from 59 caves in OK	
Folsomia candida	White Springtail	GNR	G5	SNR	S5	Common in eastern USA	
Gammarus lacustris	Sideswimmer	GNR	G4	SNR	S1	See Graening et al. 2006	
Gammarus minus	Sideswimmer	GNR	G4	SNR	S4	See Graening et al. 2006	
Gammarus pseudolimnaeus	Northern Spring Amphipod	G5	G4	SNR	S1	See Graening et al. 2006	
Gerris remigis	Water Strider	GNR	G5	SNR	S5	Common in eastern USA	
Hesperochernes occidentalis	Cave False Scorpion	G4G5		SNR	S1	Found in only 2 sites in OK	
Hyalella azteca	Sideswimmer	G5		SNR	S4	See Graening et al. 2006	
Islandiana unicornis	Cave Spider	G3G4		SNR	S1	Found in only 1 site in OK	
Lirceus garmani	Water Slater	GNR	G4	SNR	S4	See Graening et al. 2008	
Lirceus hoppinae	Water Slater	GNR	G4Q	SNR	SIQ	See Graening et al. 2008	
Lirceus ouachitaensis	Water Slater	GNR	G2Q	SNR	S2Q	See Graening et al. 2008	
Lirceus trilobus	Water Slater	GNR	GIQ	SNR	S1Q	See Graening et al. 2008	
Loxosceles reclusa	Brown Recluse Spider	GNR	G5	SNR	S5	Common in eastern USA	
Macrocera nobilis	Fungus Gnat	GNR	G5	SNR	S4	Abundant in caves in OK	
Meta americana	Cave Orb Weaver	GNR	G5	SNR	S4	Abundant in caves in OK	
Miktoniscus racovitzai	Racovitza's Cave Isopod	G3G4- T1T2	G3-T1	SNR	S1	Single-site endemic subspecie	
Musca domestica	Common Housefly	GNR		SNR	SNA	Common in USA; not a conservation target	
Narceus americanus	Millipede	G5		SNR	S4	Common in OK	
Orconectes neglectus neglectus	Ringed Crayfish	G5- T4T5		SNR	S4	Common in OK	
Oxidus gracilis	Greenhouse Millipede	G5		SNR	SNA	exotic species	
Plethodon albagula	Slimy Salamander	G5		SNR	S4	Abundant in caves in OK	
Porrhomma cavernicola	Appalachian Cave Spider	G4G5		SNR	S1	Found in only 1 site in OK	
Pseudosinella dubia	Cave Springtail	G1G2	(5. 5. B)	SNR	S1	Found in only 1 site in OK	
Ptomaphagus cavernicola	Round Fungus Beetle	GNR		SNR	S1	Found in only 4 sites in OK	
Scoliopterix libratix	Pink Cave Moth	GNR	G5	SNR	S3		
Spelobia tenebrarum	Cave Dung Fly	GNR	1.1	SNR	S1	Found in only 2 sites in OK	
Stygobromus alabamensis	Alabama Cave Amphipod	G5	G4	SNR	S3	See Graening et al. 2006	
Stygobromus bowmani	Bowman's Cave Amphipod	G1G2	G1	S1?	S1	See Graening et al. 2006	
Stygobromus onondagaensis	Onondaga Cave Amphipod	G5	G3	SNR	S2	See Graening et al. 2006	
Stygobromus ozarkensis	Ozark Cave Amphipod	G4		S1	S3	See Graening et al. 2006	
Trigenotyla blacki	Black's Cave Millipede	GNR	G1	SNR	S1	Extremely endemic (Shear 2003)	

•

Taxon	Common Name	Old G rank	New G rank	Old S rank	New S rank	Comment
Trigenotyla seminole	Millipede	GNR	G1	SNR	S1	Extremely endemic (Shear 2003)
Trigenotyla vaga	Millipede	GNR	G1	SNR	S1	Extremely endemic (Shear 2003)

The relationship between total species richness of a site and the richness of subterraneanobligates at the site is significant (Figure 3), indicating that general species richness is an estimator for subterranean obligate diversity (which is the generally-accepted metric of subterranean biodiversity worldwide). The relationship between a site's richness and the number of obligates in the site is directly proportional, with roughly one obligate for every 10 total species. The equation of linear fit is: # of obligates = 1.065 + 0.082 xrichness ($r^2 = 0.546$, p < 0.001).

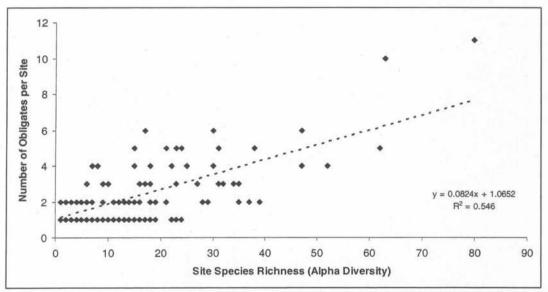
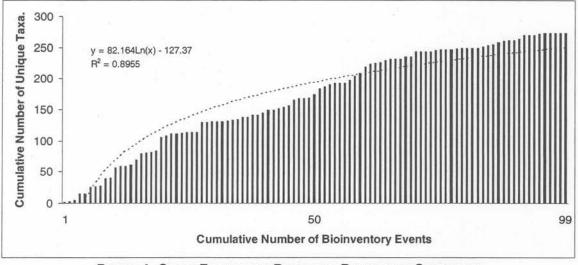


FIGURE 3. RELATIONSHIP BETWEEN TOTAL RICHNESS AND OBLIGATE RICHNESS IN OKLAHOMA

Most Common Species


Overall, arthropods dominated the subterranean habitats, especially crickets, mosquitoes, spiders, and springtails. The most common invertebrate taxon was cave crickets of the genus *Ceuthophilus*. The most common vertebrates were eastern pipistrelle bat (*Periomyotis subflavus*) and cave salamander (*Eurycea lucifuga*). In aquatic habitats, crustaceans dominated (with the majority of occurrences represented by cave isopods (*Caecidotea*). Table 4 lists the most commonly occurring animal Families in subterranean habitats of Oklahoma and the number of sites in which they were found.

Scientific Name	Common Family Name	Number of Sites
Vespertilionidae	Bats	170
Plethodontidae	Lungless Salamanders	81
Raphidophoridae	Camel Crickets	79
Asellidae	Water Slaters & Sowbugs	117
Crangonyctidae	Sideswimmers	92
Muridae	Mice	37
Heleomyzidae	Flies	34
Cambaridae	Crayfishes	81
Culicidae	Mosquitoes	50
Mycetophilidae	Fungus Gnats	37
Staphylinidae	Rove Beetles	33
Entomobryidae	Springtails	20
Chironomidae	Midges	61
Araneidae	Orb-weaver Spiders	29
Tipulidae	Crane Flies	32
Tyrannidae	Flycatchers	35
Leiodidae	Round Fungus Beetles	20
Ranidae	Frogs	34
Carabidae	Ground Beetles	37
Trichopetalidae	Millipedes	13
Gerridae	Water Striders	51
Polygyridae	Land Snails	14
Campodeidae	Two-pronged Bristletails	10
Lumbricidae	Earthworms	29
Veliidae	Broad-shouldered Water Striders	37
Physidae	Aquatic Snails	57
Sminthuridae	Globular Springtails	13
Procyonidae	Raccoons, Skunks, etc.	26
Dytiscidae	Predaceous Diving Beetles	38
Sphaeroceridae	Dung Flies	23
Gammaridae	Sideswimmers	25
Hyallelidae	Side Swimmers	52
Phalangodidae	Harvestmen	12
Hydrophilidae	Water Scavenger Beetles	37
Paradoxosomatidae	Millipedes	28
Phoridae	Humpbacked Flies	5
Pisidiidae	Peaclams	18
Rhagidiidae	Mites	9
Planaridae	Flatworms	33
Sciaridae	Fungus Gnats	12

TABLE 5. TOP 40 MOST COMMON FAMILIES IN SUBTERRANEAN HABITATS OF OKLAHOMA

Regional Richness Estimates

The bioinventory effort to date may be noteworthy, but it is far from complete. One statistical method for estimating this effort is an accumulation curve, where each new species found during consecutive collecting trips is added to the total number of species found and plotted against total number of collecting trips. This plotted curve usually is steep in the beginning, where early sampling efforts produce many new species, and the curve flattens later, when later sampling efforts produce few, if any, species not previously collected. The collector's curve approaches a theoretical maximum (asymptote), which represents the grand total number of species in that sampled habitat, a value that is sometimes interpreted as the carrying capacity of that ecosystem. A collector's curve for this study was generated (Figure 4), which compared sampling effort (cumulative number of bioinventories) to the growing species list (cumulative number of species), defined as total number of species or total number of obligate species. The flattening trend of the curve suggests that sampling effort to date has detected the majority of total species that can be found in subterranean habitats of Oklahoma, and that future bioinventories will add more species to this cumulative list, but probably at an exponentially slower rate.

Habitat Correlates Compared to Richness

Habitat variables data were collected during the fieldwork at each site; these data were compared to the site's total species richness and obligate richness to discern any biodiversity patterns. Species richness of a site was directly proportional to its passage length (m)(Figure 5). Linear regression indicates that the relationship is directly proportional, but a poor fit, where roughly one additional species is added for every 200 m of passage added ($r^2 = 0.466$, p < 0.001).

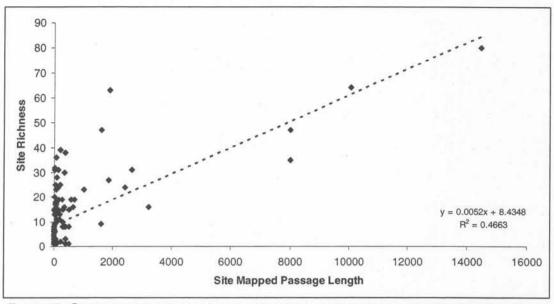


FIGURE 5. SPECIES RICHNESS OF A SITE WAS DIRECTLY PROPORTIONAL TO ITS PASSAGE LENGTH (METERS)

Other habitat characteristics were compared to site richness. Most caves did not have appreciable organics and most did not have bat guano, but species richness was significantly greater when organics and/or guano were present (*t*-test on organics, t = -18.157, p < 0.001)(*t*-test on guano; t = -14.522, p < 0.001). Similarly, richness of obligates was greater with organics present and when guano was present.

Species richness did significantly differ between category of water resource; ANOVA and Tukey-Kramer Honestly Significantly Different (HSD) statistics determined that sites with perennial streams were significantly richer than all other types of sites, and conversely, dry sites were the lowest in richness (ANOVA, n = 664, F = 58.178, p < 0.001). Obligate richness followed a similar pattern.

Species richness was significantly different between habitat types (F = 3.882, p = 0.001); but comparison of means by Tukey-Kramer HSD determined that habitat types were not significantly different. When habitat types were collapsed into more general categories (caves and mines combined; springs and wells combined; hyporheos sites removed; bluff shelter, sinkhole, pit, and crevice/talus combined into "other"), caves (and springs were found to be richer than "other" types of sites (F = 9.924, p < 0.001).

For sites having degree of public (recreational) use, most sites ranked "light". Site richness was significantly different between degree of use categories (ANOVA, F = 9.505, p < 0.001); comparison of pairs using Tukey-Kramer HSD revealed that sites with moderate and heavy use were significantly more rich than sites with light use or no use. Given the correlation between richness and passage length, this result was not totally unexpected as degree of public use was significantly related to passage length (ANOVA, F = 3.019 p = 0.030). Richness of obligates followed a similar pattern.

Species richness was significantly greater when the site was gated versus ungated caves (including "unknown") (*t*-test, t = -12.452, p < 0.001). Richness of obligates followed a similar pattern (*t*-test, t = -11.274, p < 0.001). However, this may be another nested effect because almost all long caves are gated, and we demonstrated earlier that longer caves have greater richness.

Species richness was significantly different between site access types (F = 27.546, p < 0.001); comparison of pairs using Tukey-Kramer HSD revealed that the category "Scientific Study Only" was the highest in richness and "Unrestricted access" and "closed/sealed" were the lowest in richness.

Most sites were not vandalized; however, those that were vandalized had greater richness (*t*-test, t = -13.716, p < 0.001). Richness of obligates followed a similar pattern (F = 159.457, p < 0.001). Again, due to the correlation between richness and length, this result was not totally unexpected. Vandalized caves were significantly longer than caves not vandalized (*t*-test, t = -5.391, p < 0.001). Contingency analysis of vandalism by degree of public use revealed a significant relationship (Pearson X² = 136.790, p < 0.001). Most sites having light use or no use had no vandalism but those sites rated "moderate" and "heavy use" (18 and 19 respectively) were more often vandalized.

Owner class was compared to richness and found to be significantly different by class (F = 4.525; p = 0.001). This was a confusing result, as the "federal" and "state" classes were lower in richness than "commercial" and "private" classes.

Ranking of Cave Sites in Terms of Biological Importance

Sites were ranked in biological importance using 3 variables: site length, total species richness, and obligate richness. Caves have often been likened to islands due to their insular features, especially their hydrologic and geologic barriers (e.g. Culver, 1970). As a general pattern, larger islands carry more species than smaller ones, and this speciesarea relationship is well documented in diversity studies (e.g. MacArthur and Wilson, 1967). Similarly, the largest caves (measured as passage length) are often the most diverse - the world's longest cave, Mammoth Cave, at over 571 km of passage, has the greatest known number of stygobites and troglobites (Culver and Sket, 2000). Longer caves imply more habitat types and trophic resources, which may increase the few niches available, and increase carrying capacity (Culver and Sket, 2000). Cave length was significantly correlated to richness in this study; for this reason, length was used as primary criterion for biological significance ranking. The richness of obligate species is often used to rank the importance of the world's caves (e.g. Culver and Sket, 2000), and this criterion was also used in this study. The third criterion was total species richness, which is a common measure of biological significance, and in this study, significantly fewer caves had high species counts. Sites that had been bioinventoried adequately were ranked according to these three criteria, with a minimum of at least 1 obligate species to pass; Table 5 shows the top 40 ranking caves according to their score, where Score = total richness + (10 x obligate richness) + square root of length (m).

Site Name (or Code)	Total Richness	No. of Obligates	Mapped Length	Score	Rank
AD-14	76	11	14494	306	1 st
DL-39	63	10	1891	206	2 nd
J. Selman Cave System	69	1	8000	134	3 rd
MU-2	47	3	8000	166	4^{th}
DL-91	47	6	1600	147	5 th
CZ-9	62	5	604	138	6 th
AD-9	32	5	2641	133	7^{th}
DL-148	30	6	352	109	8 th
AD-7	38	5	370	107	9 th
Mystic Cave	16	3	3220	103	10^{th}
SQ-1	27	3	1854	100	11 th
DL-32	31	5	137	93	12^{th}
Nescatunga Cave	33	1	2400	92	13^{th}
DL-21	17	6	100	87	14^{th}
DL-38	24	5	130	85	15^{th}
OT-4	23	3	1000	85	16^{th}
DL-74	15	5	300	82	17^{th}
CZ-11	23	5	75	82	18^{th}
CZ-18	25	4	200	79	19 th
DT-19	9	3	1600	79	20^{th}
AD-8	34	3	214	79	21 st
DL-119	18	5	100	78	22^{nd}
DL-8	35	3	107	75	23 rd
AD-19	39	2	200	73	24^{th}
DL-51	21	5		71	25 th
DL-102	30	4		70	26 th
AD-137	32	3	30	67	27^{th}
Coal Creek Cave	31	3	30	66	28^{th}
DL-41	35	3		65	29 th
DL-3	36	2	80	66	30 th
DL-1	19	2	567	63	31 st
DL-79	22	4		62	32^{nd}
DL-59	28	2	100	58	33 rd
DL-104	15	2	500	57	34^{th}
DL-47	10	2 3	300	57	35 th
AD-54	17	3	100	57	36 th
AD-220	19	2	281	56	37^{th}
DL-64	18	3	50	55	38^{th}
MY-12	15	4		55	39 th
DL-19	17	3	50	54	40^{th}

TABLE 6. TOP 40 HIGHEST RANKING CAVE SITES IN OKLAHOMA

Note: Score = total richness + (10 x obligate richness) + square root of length (m)

Other Findings and Resulting Publications

This grant project produced many other findings, which have been presented separately in various journal articles listed below (with the State Wildlife Grant Program acknowledged). Likewise, results of individual status surveys of some rare and endangered fauna of Oklahoma caves were published in the following articles:

- Bergey, E., W. Matthews, and FJ. Fry. In press. Springs in time: fish fauna and habitat changes in springs over a 20-year interval. Aquatic Conservation: Marine and Freshwater Ecosystems
- Graening, G., M. Slay, D. Fenolio, and H. Robison. 2008. Annotated checklist of the Isopoda (Subphylum Crustacea: Class Malacostraca) of Arkansas and Oklahoma, with emphasis upon subterranean habitats. Proceedings of the Oklahoma Academy of Science.
- Graening, G., J. Holsinger, D. Fenolio, E. Bergey, and C. Vaughn. 2006. Annotated checklist of the amphipod crustaceans of Oklahoma, with emphasis on groundwater habitats. Proceedings of the Oklahoma Academy of Science 86:65-74.
- Lewis, J., G. Graening, D. Fenolio, and E. Bergey. 2006. Caecidotea mackini, new species, with a synopsis of the subterranean asellids of Oklahoma (Crustacea: Isopoda: Asellidae). Proceedings of the Biological Society of Washington 119(4):563-575.
- Graening, G., H. Hobbs III, M. Slay, W. Elliott, and A. Brown. 2006. Status update for bristly cave crayfish, Cambarus setosus (Decapoda: Cambaridae) and range extension into Arkansas. Southwestern Naturalist 51(3):382-391.
- Fenolio, D., G. Graening, and J. Stout. 2006. Coprophagy in a cave-adapted salamander. Proceedings of the Royal Society of London, B, 273(1585):439-444.
- Graening, G., and D. Fenolio. 2005. Status update of the Delaware County crayfish, Cambarus subterraneus (Decapoda: Cambaridae). Proceedings of the Oklahoma Academy of Science 85:85-89.
- Fenolio, D., G. Graening, and J. Stout. 2005. Seasonal movement pattern of pickerel frogs (Rana palustris) through an Ozark Cave and ecological implications supported by stable isotope evidence. Southwestern Naturalist 50(3):385-389.

Other publications related to the authors or this project can be found at: http://research.naturalinvestigations.com/Cave_Pubs.htm

Part 2. Spring Survey.

Habitat characterization. Forty-one springs were sampled. Additionally, samples from 9 springs sampled previously were also processed. The survey included springs in 17 counties, and 6 named and 2 alluvial aquifers (Fig. A). Chemically, most of the sampled springs had circum-neutral pH (Table A). The four gypsum springs (springs SPR06-01 through -04) tended to have higher pH. These four springs also had elevated conductivity (over 2000 μ S/cm). One sulphur spring (SPR04-7), which had very high conductivity, was included in the survey.

Discharge, or the amount of water flowing from the spring, is an important determinant of the spring's biota. The higher discharge springs (> 10 l/s) were primarily associated with aquifers in limestone areas – the Arbuckle-Simpson and Ozark Plateau. These aquifers included springs with both high and low discharge; for example the discharge range among the 13 Arbuckle springs was 0.08 to 90.6 l/s. One high discharge spring, McCorkle Spring (SPR05-08), was found in western Oklahoma. This spring has diffuse outlets and supports a large wetland with a diverse assemblage of vascular plants; the other sampled springs associated with the High Plains Aquifer were either linear springs along streams, hillslope seeps, or a seep are supporting a cattail marsh.

The water temperature of springs is almost constant and often reflects the average annual temperature of the region. The temperature of most of the sampled springs was in the 15 to 20 °C range. Higher temperatures were found in the High Plains Aquifer springs (Table A), which ranged from 20 to 28 °C. Springs with deep water sources may have somewhat higher temperatures than shallow-source springs (Förster et al., 1994); alternatively, higher temperatures may result from surface heating when temperatures are taken in the springbrook downstream of the source, especially where and discharge is low or the water is pooled and thus retained. Both of these factors may contribute to the higher temperatures in the High Plains Aquifer springs, which originate low in the aquifer (Pete Thurmond, personal communication) and often occur as seeps that have shallow water that can be quickly warmed.

Rare fish, crayfish and invertebrates. Although rare fish (e.g., *Etheostoma cragini*) and crayfish have been found in similar surveys of different springs (Bergey, unpublished data), no rare species of fish or crayfish were found in this survey of 41 springs (Table B). An as-yet-unidentified cave amphipod was collected in an Okfuskee County spring.

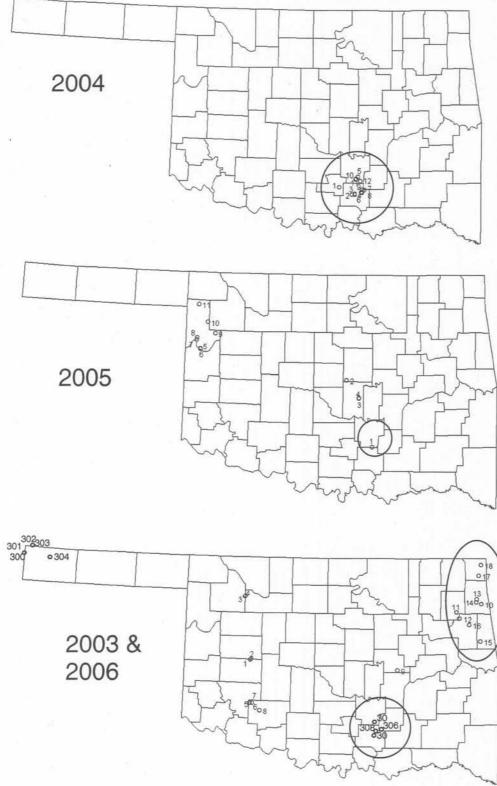
The most exciting find was a single specimen of a freshwater polychaete, which has been provisionally identified as *Manayunkia speciosa*, based on its known distribution and resemblance to illustrations. Polychaetes are segmented worms and are in the same phylum (the Annelida) as oligochaetes, the common freshwater worms, and leeches. Nearly all polychaetes are marine. In the USA, freshwater polychaetes are found almost entirely in habitats along the East and West coasts. (Pennak, 1989). *Manayunkia speciosa* is found in the Great Lakes, and in states bordering both coasts and the Gulf of Mexico. It's occurrence in NE Oklahoma, if substantiated, is a significant range extension.

Invertebrate biodiversity. Despite their patchy distribution, relative isolation and cool summer temperatures, Oklahoma springs have a diverse biota, especially with respect to invertebrates. Over 200 taxa were found among the 41 springs (Appendix 2). Insects were especially diverse, with over 30 taxa of aquatic beetles (Coleoptera) and flies (Diptera), and over 20 taxa of true bugs (Hemiptera). Rudisill and Bass (2005) likewise found diverse and abundant insect populations in springs. Common non-insects included crustaceans such as amphipods and crayfish, and various snails and worms.

Richness, or the number of species present, ranged from a low of 10 taxa to a high of 51 taxa (Appendix 2). These counts are conservative because they do not include microcrustaceans (ostracods, copepods, and cladocerans), and several groups were not identified to genus (e.g., naidid and tubificid worms, water mites, and chironomid midges). The highest richness was found in Lowrance Spring (SPR04-01), which is made up of several 'boils' in a spring pond with vegetated edges and an extensive, well-vegetated springbrook. Lowrance Spring also had the highest flow (90.6 l/s) among the 41 sampled springs, which suggests a relationship between discharge and richness. Regression analysis showed a relationship (F = 9.62, p = 0.004); however the relationship is weak, accounting for only 22% of the variability of the data ($R^2 = 0.216$). The wide range in the number of taxa present in low-discharge springs weakened the relationship and occurred, in part, because the microhabitat structure of springs affects richness (Rudisill and Bass 2005).

One of the low-richness springs was a sulphur spring (SPR04-07) where the harsh chemical conditions supported 13 species. Several of the other springs with few taxa were found in the Ozarks; where some of the sampled streams were quite small. Drought conditions undoubtedly reduced habitat space and variation within some of these springs and affected the number of taxa.

A comparison of the invertebrate composition among springs using non-metric multidimensional scaling (NMDS) is shown graphically in Figure B. Springs from each aquifer-association grouped together, indicating similar taxonomic composition. Although clusters of many of the aquifer-groups have considerable overlap, some pairs of aquifer groups differ. Differing pairs of aquifer-springs were identified using ANOSIM (Analysis of similarity; PRIMER). Included among the differing pairs were the Arbuckle-Simpson and Ozark springs (R = 0.566, p < 0.001) and the High Plains and Ozark springs (R = 0.729, p < 0.001). Significant differences in 5 other spring-group pairs were found (using the aquifer-group abbreviations from Fig. B: C-H, H-a, H-T, a-O, H-R), but the number of springs in each set were considered too small for accurate analysis.


This NMDS pattern is caused by a combination of taxa that are present in most springs (= characteristic taxa, occurring in 50% or more of the springs) and groups of taxa that are characteristic of specific aquifer-groups of springs. Characteristic taxa for all springs and for springs associated with the Arbuckle-Simpson, Ozark, and High Plains aquifers are shown in Table C.

Spring faunas consist of a combination of generalists species, which are commonly found in area ponds and/or streams, spring specialists (including endemics), and occasional subterranean crustaceans. Most of the characteristic taxa in the surveyed springs are generalists, a pattern that has been noted in other surveys of Oklahoma springs (Gaskin and Bass 2000, Rudisill and Bass 2005). Aquatic worms, fly larvae (chironomids and ceratopogonids), water striders, fingernail clams, and pond snails are all common in ponds and streams – as well as in springs. Three of the characteristic taxa are apparently specialized for springs: planarians, the damselfly genus *Argia* and the scud *Hyalella azteca*. Planarians included the large black *Dugesia dorotocephala* and also smaller species; all were typically found in large numbers. The possibility of *Argia* as a spring indicator-species has been noted by David Bass (personal communication). *Hyalella azteca* is a species complex and molecular studies have indicated that more than one species occurs in springs. Although *Hyalella* can be found in a variety of other aquatic habitats, densities in springs are often very high.

Ozark springs were uniquely characterized by three crustaceans: the amphipod *Gammarus*, the isopod *Lirceus* and the ringed crayfish *Orconectes neglectus*. In Ozark springs, *Gammarus* replaced *Hyalella azteca*, which was the common amphipod in all the other groups of springs. Isopods were common only in the Ozark springs, where they were often abundant. Although the distribution of the ringed crayfish in Oklahoma is primarily in the Ozark Plateau, hence it's presence in Ozark springs, the species also occurs as a disjunct population in the Blue River, within the Arbuckle-Simpson area. However no ringed crayfish were found in the sampled Arbuckle springs, indicating that the species is restricted within the Arbuckles.

Although Arbuckle and Ozark springs are both limestone-based, their invertebrate faunas are different (Fig. B and Table C). In contrast, the invertebrate faunas of Arbuckle and High Plains springs are similar although the High Plains springs are mostly sand-based rather than limestone-based. These results highlight the distinctiveness of the Ozark and Arbuckle faunas.

Figure A. Maps showing the locations of sampled springs by sampling year. Circled springs sampled in 2003, 2004, 2005 are associated with the Arbuckle-Simpson aquifer; circled springs sampled in 2006 are Ozark-associated springs.

Code (#)	Site name	County	Aquifer	Sampling date	Discharge (l/s)	Temp. (°C)	pH	Conduct. (µS/cm)
SPR04-01 (1)	Lowrance Spring	Murray	Arbuckle-Simpson	17-Jun-04	90.62	18.3	7.2	187
SPR04-02 (2)	unnamed	Johnston	Arbuckle-Simpson	17-Jun-04	2.34	20.6	7.2	594
SPR04-03 (3)	Three Springs	Johnston	Arbuckle-Simpson	22-Jul-04	7.08	18.0	7.2	591
SPR04-04 (4)	Wolf Spring	Johnston	Arbuckle-Simpson	22-Jul-04	3.17	18.1	7.3	559
SPR04-05 (5)	unnamed spring	Pontotoc	Arbuckle-Simpson	23-Jul-04	0.67	18.1	7.2	696
SPR04-06 (6)	Rutherford Spring	Johnston	Arbuckle-Simpson	24-Jul-04	15.53	18.3	6.9	758
SPR04-07 (7)	Rotten Egg Spring	Coal	Arbuckle-Simpson	24-Jul-04	0.52	20.5	6.9	12.4 mS
SPR04-08 (8)	Viola Spring	Johnston	Arbuckle-Simpson	25-Jul-04	11.38	NA	7.1	1795
SPR04-09 (9)	Houghtubby Spring	Coal	Arbuckle-Simpson	25-Jul-04	0.08	18.5	7.1	708
SPR04-10 (10)	Sheep Creek Spring	Pontotoc	Arbuckle-Simpson	25-Jul-04	44.04	17.1	7.2	605
SPR04-11 (11)	unnamed spring	Pontotoc	Arbuckle-Simpson	26-Jul-04	2.33	17.0	7.2	616
SPR04-12 (12)	Wildcat Spring	Pontotoc	Arbuckle-Simpson	02-Aug-04	1.82	19.4	6.9	557
SPR05-01 (13)	Coal Cave Spring	Pontotoc	Arbuckle-Simpson	17-May-05	0.19	16.8	7.1	684
SPR05-02 (14)	Doddehl Spring	Lincoln	Central Oklahoma	18-May-05	0.5	14.8	6.6	257
SPR05-03 (15)	Trevor Spring	Pottawat.	Central Oklahoma	19-May-05	0.08	16.2	6.0	121
SPR05-04 (16)	unnamed spring	Pottawat.	Central Oklahoma	19-May-05	0.15	16.6	7.3	872
SPR05-05 (17)	unnamed seeps	Ellis	High Plains	07-Jun-05	NA	24.4	8.1	646
SPR05-06 (18)	unnamed seep	Ellis	High Plains	07-Jun-05	0.13	27.9	7.6	895
SPR05-07 (19)	Word Spring	Ellis	High Plains	08-Jun-05	3.50	20.6	7.8	792
SPR05-08 (20)	McCorkle Spring	Ellis	High Plains	08-Jun-05	13.12	22.1	7.7	413
SPR05-09 (21)	Bowman Spring	Ellis	High Plains	08-Jun-05	5.00	25.9	7.8	692
SPR05-10 (22)	Reininger Spring	Ellis	High Plains	09-Jun-05	1.18	20.6	7.4	630
SPR05-11 (23)	Dugger Spring	Ellis	High Plains	09-Jun-05	NA	25.0	8.1	694

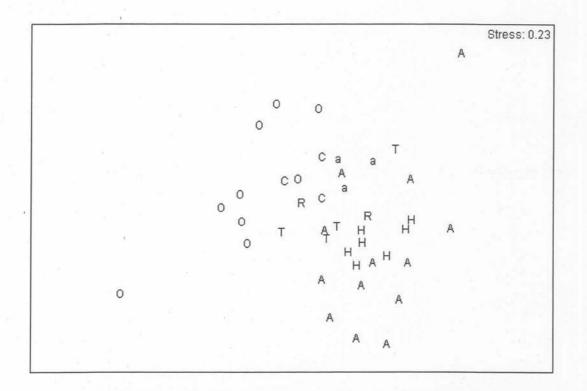
Table A. Springs surveyed in 2004-2006, including locations and water quality characteristics.

Code (#)	Site name	County	Aquifer	Sampling date	Discharge (l/s)	Temp. (°C)	pН	Conduct. (µS/cm)
SPR06-01 (24)	Gyp Crk springs	Washita	Rush Spring	15-May-06	NA	16.5	8.1	2810
SPR06-02 (25)	Gyp Crk springs	Custer	Rush Spring	15-May-06	NA	17.6	8.0	2900
SPR06-03 (26)	Inman Spring	Major	Cimmaron River*	16-May-06	0.06	15.1	- 8.0	3075
SPR06-04 (27)	Bat Cave Springs	Major	Cimmaron River*	16-May-06	0.05	13.6	7.4	2800
SPR06-05 (28)	Time-of-Day	Comanche	Arbuckle-Timbered Hills**	17-May-06	1.72	17.0	7.5	630
SPR06-06 (29)	Baker Peak Spr	Comanche	Arbuckle-Timbered Hills**	17-May-06	0.24	16.6	7.0	346
SPR06-07 (30)	Sugar Creek Spr	Comanche	Arbuckle-Timbered Hills**	17-May-06	0.06	18.4	8.3	399
SPR06-08 (31)	White Sulphur Spr	Comanche	Arbuckle-Timbered Hills**	18-May-06	0.01	17.7	8.0	287
SPR06-09 (32)	Burden Spring	Okfuskee	N. Canadian R.*	19-Jun-06	0.12	17.8	6.1	137
SPR06-10 (33)	January-Stansbury Spr	Delaware	Ozark Plateau	19-Jun-06	18.36	14.5	7.0	223
SPR06-11 (34)	Roadside Park Spr	Mayes	Ozark Plateau	20-Jun-06	1.15	15.5	7.2	359
SPR06-12 (35)	Cave Spring	Cherokee	Ozark Plateau	20-Jun-06	5.84	15.4	6.8	183
SPR06-13 (36)	Everitt Spring	Delaware	Ozark Plateau	20-Jun-06	64.54	15.3	6.9	235
SPR06-14 (37)	Krause Spring	Delaware	Ozark Plateau	20-Jun-06	0.60	18.5	7.4	195
SPR06-15 (38)	Cave Spring	Adair	Ozark Plateau	21-Jun-06	0.19	15.6	7.7	341
SPR06-16 (39)	PumSpkin Spring	Cherokee	Ozark Plateau	21-Jun-06	negligible	21.1	7.7	220
SPR06-17 (40)	Cave Spring	Ottawa	Ozark Plateau	22-Jun-06	negligible	16.5	7.8	405
SPR06-18 (41)	Cave Spring	Ottawa	Ozark Plateau	07-Jul-06	0.82	15.4	7.0	333
SPR03-300	unnamed	Union, NM	High Plains	19-May-03	negligible	16.8	7.8	1083
SPR03-301	Chet Springs	Union, NM	High Plains	19-May-03	negligible	17.9	7.6	593
SPR03-302	unnamed	Baca, CO	High Plains	20-May-03	0.04	17.1	7.9	963
SPR03-303	unnamed	Baca, CO	High Plains	20-May-03	negligible	26.6	8.1	246
SPR03-304	Flagg Springs	Cimarron	High Plains	21-May-03	0.04	15.0	9.0	321
SPR03-305	Desperado Spring	Johnston	Arbuckle-Simpson	24-Jul-03	0.09	18.0	6.9	668

SPR03-306	Pot Spring	Pontotoc	Arbuckle-Simpson	25-Jul-03	1.94	17.7	7.3	459
SPR03-307	Wide Spring	Coal	Arbuckle-Simpson	25-Jul-03	unknown	17.5	7.2	535
SPR03-308	Deadman Spring	Johnston	Arbuckle-Simpson	26-Jul-03	1.10	17.8	7.1	678

* alluvial springs along major rivers
** closest named aquifer to the springs in the Wichita Mountains National Wildlife Refuge

Notes:


1. High Plains Aquifer is also the Ogallala Aquifer and the Ozark Plateau Aquifer is also called the Ozark Aquifer or the Roubidoux Aquifer.

2. NA = data missing or not available (e.g., discharge of small linear springs along streams)

Table B. Occurrence records of crayfish and fish in the 2003-2008 survey of 41Oklahoma springs.

Code (#)	Site name	Aquifer	Crayfish	Fish
SPR04-01 (1)	Lowrance Spring	Arbuckle	O. virilis	G. affinis, E. radiosum, E gracile, Etheostoma sp.
SPR04-02 (2)	unnamed	Arbuckle	O. virilis	G. affinis, Campostoma anomalum, E. spectabile, Lepomis macrochirus
SPR04-03 (3)	Three Springs	Arbuckle	P. simulans	E. spectabile
SI K04-03 (3)	Three optings	Albuckie	1.51/1414/15	G. affinis, E. spectabile,
SPR04-04 (4)	Wolf Spring	Arbuckle	O. nais	Micropterus salmoides
SPR04-05 (5)	unnamed spring	Arbuckle	unidentified juv.	
SPR04-06 (6)	Rutherford Spring	Arbuckle		G. affinis
SPR04-07 (7)	Rotten Egg Spring	Arbuckle		
SPR04-08 (8)	Viola Spring	Arbuckle	O. palmeri longimanus	
SPR04-09 (9)	Houghtubby Spring	Arbuckle		
SPR04-10 (10)	Sheep Creek Spring	Arbuckle	O. palmeri longimanus	C. anomalum, E. radiosum, Etheostoma sp.
SPR04-11 (11)	unnamed spring	Arbuckle	unidentified juv.	
SPR04-12 (12)	Wildcat Spring	Arbuckle		G. affinis
SPR05-01 (13)	Coal Cave Spring	Arbuckle	O. palmeri longimanus, P. simulans	E. radiosum
SPR05-02 (14)	Doddehl Spring	Central OK	1. Simuans	L. ruuiosum
			D 1	
SPR05-03 (15)	Trevor Spring	Central OK	P. simulans	
SPR05-04 (16)	unnamed spring	Central OK	P. simulans	
SPR05-05 (17)	unnamed seeps	High Plains	unidentified juv.	
SPR05-06 (18)	unnamed seep	High Plains		Gambusia affinis
SPR05-07 (19)	Word Spring	High Plains		
SPR05-08 (20)	McCorkle Spring	High Plains		Gambusia affinis
SPR05-09 (21)	Bowman Spring	High Plains		
SPR05-10 (22)	Reininger Spring	High Plains		Gambusia affinis
SPR05-11 (23)	Dugger Spring	High Plains	unidentified juv.	
SPR06-01 (24)	Gyp Crk springs	Rush Spr.	Orconectes sp. (juveniles)	
SPR06-02 (25)	Gyp Crk springs	Rush Spr.	Procambarus sp. (juveniles)	
SPR06-03 (26)	Inman Spring	Cimmar. R.		
SPR06-04 (27)	Bat Cave Springs	Cimmar. R.	Procambarus sp. (juveniles)	Pimephales promelas, Lepomis macrochirus
SPR06-05 (28)	Time-of-Day	Timbered Hills		Lepomis cyanellus
SPR06-06 (29)	Baker Peak Spr	Timbered Hills	Procambarus simulans	
SPR06-07 (30)	Sugar Creek Spr	Timbered Hills	Orconectes sp. (juveniles)	

Code (#)	Site name	Aquifer	Crayfish	Fish
SPR06-08 (31)	White Sulphur Spr	Timbered Hills		Gambusia affinis
SPR06-09 (32)	Burden Spring	N. Can. R.		
SPR06-10 (33)	January-Stans. Spr	Ozark Plat.	Orconectes neglectus	
SPR06-11 (34)	Roadside Park Spr	Ozark Plat.		
SPR06-12 (35)	Cave Spring	Ozark Plat.	Orconectes sp. (juveniles)	Pimephales promelas, Lepomis macrochirus
SPR06-13 (36)	Everitt Spring	Ozark Plat.	O. neglectus	Cottus carolinae
SPR06-14 (37)	Krause Spring	Ozark Plat.	O. neglectus	
SPR06-15 (38)	Cave Spring	Ozark Plat.	O. neglectus	Cottus carolinae
SPR06-16 (39)	Pumpkin Spring	Ozark Plat.	O. neglectus	
SPR06-17 (40)	Cave Spring	Ozark Plat.		
SPR06-18 (41)	Cave Spring	Ozark Plat.		
SPR03-300	unnamed	High Plains		
SPR03-301	Chet Springs	High Plains		
SPR03-302	unnamed	High Plains		
SPR03-303	unnamed	High Plains		
SPR03-304	Flagg Springs	High Plains	Orconectes sp. (juveniles)	unidentified catfish
SPR03-305	Desperado Spring	Arbuckle	Orconectes sp. (juveniles)	seen downstream
SPR03-306	Pot Spring	Arbuckle	Orconectes sp. (juveniles)	
SPR03-307	Wide Spring	Arbuckle	Orconectes sp. (juveniles)	
SPR03-308	Deadman Spring	Arbuckle		

Figure B. Relative similarity of the invertebrate faunas of 41 springs surveyed in 2004-2006 as depicted using non-metric multi-dimensional scaling (PRIMER, Version 5; Primer-E Ltd, Plymouth Marine Laboratory, U.K.). Springs are by aquifer: A = Arbuckle-Simpson, O = Ozark, H = High Plains, C = Central Oklahoma, R = Rush Springs, T = Timbered Hills, a = alluvial springs.

Table C. Characteristic taxa of invertebrates in all 41 surveyed springs and in the springs associated with three aquifers (other aquifers had few sampled springs). Characteristic taxa occur in at least half of the springs.

Common name	All springs (N = 41)	Arbuckle $(N = 13)$	Ozark $(N = 9)$	High Plains (N = 7)
flatworms	planarians			A
aquatic worms	Naididae			
aquatic worms	Tubificidae	A		
a no-see-um larva	Ceratopogonidae			
midge larvae	Chironomidae	A		A
a water strider	Aquarius			
broad-shouldered water strider	Microvelia			
damselfly nymph	Argia	A		

scud	Hyalella			
a fingernail clam	Sphaeriidae	A		A
pond snail	Physa	A		A
a water scavenger beetle	d	Tropisternus III		
a marsh beetle		Limnichus		A
a mosquito larva		Anopheles		
a mayfly nymph		Callibaetis		
a water strider		Trepobates		
ringed crayfish			O. neglectus	
an isopod			Lirceus	
a scud			Gammarus	
hydra				Hydra
aquatic roundworms				nematodes
a predaceous diving beetle				Hydroporus II
a crawling water beetle				Peltodytes
a water scavenger beetle				Berosus
a water scavenger beetle				Enochrus
a dixid midge				Dixella
giant water bug				Belostoma/Abedus
a dragonfly nymph				Aeschna
a net-spinning caddisfly				Cheumatopsyche

F. Significant deviations:

• Springs surveys were conducted in under-surveyed portions of Oklahoma, in addition to surveys in the limestone areas. These included gypsum areas and the High Plains aquifer springs. Because we found only one flowing spring in Cimarron County, we sampled four springs located within a few miles of Oklahoma (other Cimarron County springs were dry or tapped and stored for stock tanks (with no release).

H. Prepared by:

G. O. Graening, California State University at Sacramento Elizabeth A. Bergey, University of Oklahoma at Norman

I. Date:

13 June 2008

J. Approved by:

Fisheries Division Administration Oklahoma Department of Wildlife Conservation

D. Stafford

Federal Aid Coordinator Oklahoma Department of Wildlife Conservation

K. Literature cited:

Bass, D. 2000. A preliminary study of aquatic macroinvertebrates from two springs in the Pontotoc Ridge Nature Preserve, Oklahoma. Proceedings of the Oklahoma Academy of Science 80: 105-109.

Bergey, E. A. 2002. Springs in peril: Have changes in groundwater input affected Oklahoma springs? 2001-2002. Oklahoma Water Resources Research Institute. Annual Report.

Culver, D. 1970. Analysis of simple cave communities I: Caves as islands. Evolution 24:463-474.

Culver, D., and B. Sket. 2000. Hotspots of subterranean biodiversity in caves and wells. Journal of Cave and Karst Studies 62:11-17.

Culver, C., and H. Hobbs III. 2000. U.S. troglobites and stygobites. KWI Data Resources for Karst Scientists. Karst Waters Institute. Internet URL <u>http://www.karstwaters.org/kwidata.htm</u>.

Culver, D., L. Master, M. Christman, and H. Hobbs III. 2000. The obligate cave fauna of the 48 contiguous United States. Conservation Biology 14(2): 386-401.

Förster, A., D. F. Merriam, and R. J. Sampson. 1994. Mineral springs and well waters of eastern Kansas and their relation to the geothermal field. Transactions of the Kansas Academy of Science 97: 50-63.

Gaskin, B. and D. Bass. 2000. Macroinvertebrates collected from seven Oklahoma springs. Proceedings of the Oklahoma Academy of Science 80: 17-25.

Graening, G., and A. Brown. 2000. Trophic dynamics and pollution effects in Cave Springs Cave, Arkansas. Final report to Arkansas Natural Heritage Commission. Pub. # MSC-285. Arkansas Water Resources Center, UAF.

Graening, G.O., J.R. Holsinger, D.B. Fenolio, E. Bergey, and C. Vaughn. 2006c. Annotated checklist of the amphipod crustaceans of Oklahoma, with emphasis on groundwater habitats. Proceedings of the Oklahoma Academy of Science 86:65-74.

Graening, G.O., M.E. Slay, D. B. Fenolio, and H. W. Robison. 2008. Annotated list of the Isopoda of Arkansas and Oklahoma. Proceedings of the Oklahoma Academy of Science.

Job, C. and J. Simons. 1994. Ecological basis for management of groundwater in the United States: Statutes, regulations and a strategic plan. Pages 524-541 in Groundwater Ecology. J. Gibert, D. Danielopol, and J. Stanford, editors. Academic Press, San Diego, California.

MacArthur, R., and E. Wilson. 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, New Jersey.

Matthews, W.J., J.J. Hoover, and W.B. Milstead. 1983. The biota of Oklahoma springs: natural biological monitoring of ground water quality. Technical Completion Report, Project A-099-OKLA, Contract No. 14-34-0001-1138. Oklahoma Water Resources Research Institute, Oklahoma State University, Stillwater, Oklahoma. 64 pp.

NatureServe, 2002. NatureServe Explorer: An online encyclopedia of life [web application]. Version 1.6. NatureServe, Arlington, Virginia, USA. Available: <u>http://www.natureserve.org/explorer</u>.

Pennak, R. W. 1989. Freshwater Invertebrates of the United States. 3rd edition. John Wiley and Sons, New York. 628 pp.

Rudisill, T. and D. Bass. 2005. Macroinvertebrate community structure and physiochemical conditions the Roman Nose spring system. Proceedings of the Oklahoma Academy of Science 85: 33-42.

Shear, W.A. 2003. The milliped family Trichopetalidae, Part 1: Introduction and Genera *Trigenotyla* Causey, *Nannopetalum* n. gen., and *Causeyella* n. gen. (Diplopoda: Chordeumatida, Cleidogonoidea). Zootaxa 321:1-36.

Tortorelli, R. 2002. Estimated freshwater withdrawals in Oklahoma, 1995. Website: http://ok.water.usgs.gov/wateruse/

I. Appendices

Appendix 1: Checklist of Taxa Inventoried in Caves During This Study

Appendix 1: Checklist of Taxa Inventoried in Caves During This Study

Adair County

AD-12: Araneae, Caecidotea sp., Caudata (larval), Corynorhinus townsendii ingens, Eurycea lucifuga, Gordiidae, Litocampa sp., Periomyotis subflavus, Plethodon albagula

AD-13: Araneae sp. no. 2, Ceuthophilus sp., Coleoptera, Collembola, Corynorhinus townsendii ingens, Diptera, Eurycea lucifuga, Gastropoda (terrestrial snail), Hemiptera, Hesperochernes sp., Ixodes sp., Lepidoptera, Macrocera nobilis, Meta americana, Neotoma floridana, Periomyotis subflavus, Porcellionides pruinosis, Scolopendromorpha, Siphonaptera, Trombidiidae

AD-137: Caecidotea ancyla, Caecidotea sp., Ceuthophilus gracilipes, Collembola, Collembola sp. no. 2, Cottus carolinae, Culicidae, Cylisticus convexus, Didelphis virginiana, Diplopoda sp. no. 2, Diplopoda sp. no. 3, Diptera, Dolomedes sp., Eurycea lucifuga, Gastropoda (slug), Heleomyzidae, Hymenoptera, Inflectarius inflectus, Isopoda (terrestrial), Mycetophilidae, Orconectes sp., Oxidus gracilis, Oxidus gracilis, Platynus sp., Plecoptera, Procyon lotor, Stygobromus ozarkensis, Trichoptera

AD-14: Acarina, Araneae, Araneae sp. no. 4, Archaeognatha, Caecidotea stiladactyla, Caudata (larval), Ceuthophilus gracilipes, Collembola, Collembola sp. no. 2, Corynorhinus townsendii ingens, Crosbyella sp., Culicidae, Diplopoda, Entomobryidae, Eurycea multiplicata griseogaster, Eurycea spelaea, Heleomyzidae, Hemiptera, Hyla sp., Inflectarius inflectus, Japygidae, Leiodidae, Linyphiidae, Lumbricidae, Lycosidae, Macrocera nobilis, Meta americana, Mycetophilidae, Myotis grisescens, Myotis septentrionalis, Neotoma floridana, Opiliones, Periomyotis subflavus, Plethodon albagula, Procyon lotor, Pseudosinella sp., Psocoptera, Ptomaphagus sp., Sayornis phoebe, Sayornis phoebe, Sciaridae, Scolopendromorpha, Stygobromus alabamensis, Thysanura, Tipulidae, Tomocerus sp. AD-161: Periomyotis subflavus

AD-17: Araneae sp. no. 2, Araneae sp. no. 3, Ceuthophilus gracilipes, Collembola, Collembola sp. no. 2, Corynorhinus townsendii ingens, Culicidae, Eurycea lucifuga, Heleomyzidae, Isopoda (terrestrial), Leiodidae, Lepidoptera, Macrocera nobilis, Meta americana, Mycetophilidae, Myotis septentrionalis, Neotoma floridana, Oxidus gracilis, Periomyotis subflavus

AD-18: Araneae sp. no. 3, Araneae sp. no. 4, Carabidae, Ceuthophilus gracilipes, Corynorhinus townsendii ingens, Dolomedes sp., Eptesicus fuscus, Heleomyzidae, Meta americana, Mycetophilidae, Neotoma floridana, Periomyotis subflavus, Staphylinidae

AD-19: Acarina, Amphipoda (stygobitic), Araneae sp. no. 2, Araneae sp. no. 3, Caecidotea steevesi, Ceuthophilus gracilipes, Coleoptera, Collembola, Collembola sp. no. 2, Corynorhinus townsendii ingens, Didelphis virginiana, Diptera, Diptera sp. no. 2, Diptera sp. no. 3, Discus patulus, Heleomyzidae, Inflectarius inflectus, Leiodidae, Lepidoptera, Lumbricidae, Macrocera nobilis, Mesodon thyroidus, Meta americana, Myrmeleontidae, Neotoma floridana, Periomyotis subflavus, Plethodon albagula, Procyon lotor, Pseudoscorpiones, Psychodidae, Sayornis phoebe, Siphonaptera, Sphecidae, Staphylinidae, Thryothorus ludovicianus, Tipulidae, Zonitoides arboreus

AD-220: Amphipoda (stygobitic), Carabidae, Caudata (larval), Ceuthophilus sp., Collembola, Eurycea spelaea, Heleomyzidae, Leiodidae, Lirceus sp., Mycetophilidae, Myotis grisescens, Opiliones, Oxidus gracilis, Periomyotis subflavus, Plethodon albagula, Plethodon angusticlavius, Sayornis phoebe, Staphylinidae, Tipulidae

AD-24: Araneae sp. no. 2, Corynorhinus townsendii ingens, Gastropoda (terrestrial snail), Gastropoda (terrestrial snail) no. 2, Leiodidae, Macrocera nobilis, Meta americana, Oxidus gracilis, Periomyotis subflavus, Staphylinidae, Stygobromus onondagaensis

AD-25: Corynorhinus townsendii ingens, Meta americana, Periomyotis subflavus

AD-29: Acarina, Araneae sp. no. 2, Araneae sp. no. 3, Araneae sp. no. 4, Ceuthophilus gracilipes, Collembola, Collembola sp. no. 2, Corynorhinus townsendii ingens, Culicidae, Diptera sp. no. 2, Eurycea lucifuga, Formicidae, Isopoda (terrestrial), Leiodidae, Lumbricidae, Macrocera nobilis, Mesodon thyroidus, Mesomphix sp., Meta americana, Neotoma floridana, Oxidus gracilis, Periomyotis subflavus, Procyon lotor, Sayornis phoebe, Scolopendromorpha

AD-41: Corynorhinus townsendii ingens, Periomyotis subflavus

AD-54: Caecidotea simulator, Carabidae, Ceuthophilus gracilipes, Collembola, Collembola sp. no. 2, Corynorhinus townsendii ingens, Crosbyella sp., Isopoda (terrestrial), Macrocera nobilis, Meta americana,

Mus musculus, Neotoma floridana, Opiliones, Patera perigrapta, Periomyotis subflavus, Procyon lotor, Stygobromus alabamensis

AD-6: Acarina, Araneae sp. no. 2, Cicurina sp., Collembola, Corynorhinus townsendii ingens, Hesperochernes sp., Leiodidae, Lepidoptera, Meta americana, Neotoma floridana, Oxidus gracilis, Psocoptera, Stygobromus sp.

AD-7: Acarina, Araneae sp. no. 2, Araneae sp. no. 3, Araneae sp. no. 4, Caudata (larval), Ceuthophilus sp., Cicurina sp., Collembola (troglobitic), Corynorhinus townsendii ingens, Crosbyella sp., Culicidae, Diplopoda (troglobitic), Diptera, Entomobryidae, Eptesicus fuscus, Eurycea longicauda melanopleura, Eurycea lucifuga, Heleomyzidae, Hesperochernes sp., Isopoda (terrestrial), Lirceus sp., Macrocera nobilis, Meta americana, Myotis grisescens, Narceus americanus, Oxidus gracilis, Periomyotis subflavus, Psychodidae, Rhagidiidae, Sciaridae, Staphylinidae, Staphylinidae sp. no. 2, Stygobromus alabamensis **AD-85:** Ceuthophilus gracilipes, Collembola, Culicidae, Leiodidae, Meta americana, Periomyotis subflavus, Procyon lotor, Staphylinidae

AD-86: Araneae sp. no. 2, Araneae sp. no. 2, Cambala minor, Cathartes aura, Ceuthophilus gracilipes, Culicidae, Lepidoptera, Meta americana, Neotoma floridana, Oxidus gracilis, Patera perigrapta, Periomyotis subflavus, Platynus sp., Procyon lotor, Sayornis phoebe, Scolopendromorpha

AD-87: Cambala minor, Culicidae, Gastropoda (terrestrial snail) no. 2, Meta americana, Mus musculus, Neotoma floridana, Noctuidae, Patera perigrapta, Sphecidae

Lost Turtle Cave: Araneae sp. no. 3, Cambaridae, Carabidae, Ceuthophilus gracilipes, Chilopoda, Collembola, Diptera, Gastropoda (terrestrial snail), Lepidoptera, Linyphiidae, Lumbricidae, Macrocera nobilis, Meta americana, Neotoma floridana, Oxidus gracilis, Periomyotis subflavus, Procyon lotor, Procyon lotor, Pseudosinella sp., Sminthuridae, Staphylinidae, Testudines

Cherokee County

Cave Spring: Caecidotea sp., Caudata (larval), Cottus carolinae, Crangonyx forbesi, Culicidae, Eurycea longicauda melanopleura, Eurycea lucifuga, Heleomyzidae, Micropterus dolomieu, Orconectes neglectus neglectus, Oxidus gracilis, Periomyotis subflavus, Rana palustris

CZ-10: Achaeranea tepidariorum, Araneae, Ceuthophilus gracilipes, Coccinellidae, Collembola, Eurycea lucifuga, Heleomyzidae, Litocampa sp., Psocoptera, Scutigera sp., Sphaeroceridae, Staphylinidae **CZ-11:** Araneae sp. no. 2, Caecidotea simulator, Ceuthophilus sp., Coleoptera, Crosbyella sp., Eurycea lucifuga, Heleomyzidae, Isopoda (terrestrial), Leiodidae, Lepidoptera, Litocampa sp., Meta americana, Nicoletiidae gen. nov. sp. nov., Oxidus gracilis, Polydesmida, Psocoptera, Sphaeroceridae, Staphylinidae, Stygobromus sp., Trichoniscidae

CZ-12: Achaeranea tepidariorum, Ceuthophilus gracilipes, Cicurina sp., Coleoptera, Collembola, Crosbyella sp., Culicidae, Eurycea lucifuga, Formicidae, Isopoda (terrestrial), Leiobunum sp., Meta americana, Noctuidae, Oxidus gracilis, Pseudacris crucifer crucifer, Psocoptera, Sphaeroceridae, Staphylinidae, Tabanidae, Tomocerus sp., Trichoniscidae

CZ-18: Corynorhinus townsendii ingens, Periomyotis subflavus

CZ-19: Corynorhinus townsendii ingens, Periomyotis subflavus

CZ-9: Acarina sp. no. 2, Achaeranea tepidariorum, Araneae sp. no. 4, Caecidotea ancyla, Ceuthophilus gracilipes, Ceuthophilus sp., Coleoptera sp. no. 2, Corydalidae (larva), Dasypus novemcinctus, Dolomedes sp., Eurycea longicauda melanopleura, Eurycea lucifuga, Eurycea multiplicata griseogaster, Heleomyzidae, Isopoda (terrestrial), Leiobunum sp., Leiodidae, Lithobiidae, Lycosidae, Macrocera nobilis, Megapallifera ragsdalei, Muridae, Neotoma floridana, Onychiuridae, Platynus sp., Plethodon albagula, Polydesmida, Pseudoscorpiones, Rhagidiidae, Sphaeroceridae, Staphylinidae sp. no. 2, Stygobromus sp., Thysanura, Tipulidae, Tomocerus sp.

Luck Spring: Caecidotea sp., Crangonyx forbesi, Eurycea spelaea

Comanche County

Baker's Peak Cave: Ceuthophilus sp.

Baker's Spring: Odonata (naiad), Procambarus simulans, Stygobromus alabamensis

Black Bear Spring: Culicidae, Elimia sp., Ephemeroptera (larva), Odonata (naiad), Orconectes sp.

Bluff Shelter on Bat Cave Mountain: Ceuthophilus sp., Pipistrellus hesperus

Bonanza Mine: Culicidae, Rana catesbeiana

Panther Creek CCC Well: Caecidotea sp., Ceuthophilus sp., Muridae, Stygobromus alabamensis Pennington Mine: Ceuthophilus sp., Chilopoda, Coleoptera, Corynorhinus townsendii pallescens, Elimia sp., Gastropoda (terrestrial snail), Lumbricidae, Periomyotis subflavus, Staphylinidae Sugar Creek Spring: Acris crepitans, Cambaridae, Elimia sp., Hyalella azteca, Odonata (naiad), Ostracoda

Tarbone Spring: Culicidae, Elimia sp., Odonata (naiad), Plecoptera, Rana catesbeiana

Time O'Day Spring: Hyalella azteca, Lepomis cyanellus, Odonata (naiad), Orconectes sp., Ostracoda Turtle Springs: Culicidae, Gyrinidae, Orconectes sp., Plecoptera

Unnamed spring on Wichita Mountains NWR: Odonata (naiad), Ostracoda

Delaware County

Carroll's Grotto: Caecidotea simulator, Cambarus subterraneus, Cottus carolinae, Culicidae, Inflectarius inflectus

Cave near Brush Creek Bridge: Amphipoda (stygobitic), Caecidotea stiladactyla, Ceuthophilus gracilipes, Culicidae, Eurycea spelaea, Lirceus sp., Rana palustris, Tricladida (stygobitic) **DL-1:** Caecidotea stiladactyla, Caudata (larval), Culicidae, Eurycea spelaea, Heleomyzidae, Leiodidae,

Macrocera nobilis, Meta americana, Mycetophilidae, Myotis grisescens, Periomyotis subflavus, Platynus sp., Procyon lotor, Rana palustris, Scoliopterix sp.

DL-102: Araneae sp. no. 2, Caecidotea sp., Campodeidae, Ceuthophilus sp., Ceuthophilus utahensis, Chironomidae, Cicurina sp., Diplopoda sp. no. 2, Dolomedes sp., Eurycea lucifuga, Eurycea spelaea, Formicidae, Gordiidae, Heleomyzidae, Leiobunum sp., Lepidoptera, Megapallifera ragsdalei, Mycetophilidae, Nicoletiidae gen. nov. sp. nov., Oxidus gracilis, Periomyotis subflavus, Plethodon albagula, Psocoptera, Staphylinidae, Tipulidae, Tomocerus sp.

DL-104: Caecidotea sp., Collembola, Dolomedes sp., Eurycea lucifuga, Eurycea spelaea, Leiodidae, Lumbricidae, Meta americana, Oxidus gracilis, Periomyotis subflavus, Platynus sp., Plethodon albagula, Procyon lotor, Turbellaria

DL-105: Collembola sp. no. 2, Eurycea lucifuga, Eurycea spelaea, Lycosidae, Myotis grisescens, Oxidus gracilis, Plethodon albagula, Rana catesbeiana, Rana palustris, Sayornis phoebe, Sciaridae, Sphaeroceridae, Staphylinidae, Tomocerus sp.

DL-119: Amblyopsis rosae, Cambarus tartarus

DL-148: Amblyopsis rosae, Caecidotea ancyla, Caecidotea mackini, Cambarus tartarus, Cambarus tartarus, Castor canadensis, Dolomedes sp., Dugesia sp., Eurycea lucifuga, Gerridae, Mycetophilidae, Oxidus gracilis, Rana palustris, Semotilus atromaculatus, Sphaeroceridae, Stygobromus sp., Tipula sp., Tipulidae **DL-16:** Caecidotea sp., Cottus carolinae, Culicidae, Gastropoda (terrestrial snail), Periomyotis subflavus, Sayornis phoebe

DL-19: Caecidotea ancyla, Culicidae, Didelphis virginiana, Dolomedes sp., Eurycea longicauda melanopleura, Eurycea spelaea, Eurycea spelaea, Gastropoda (terrestrial snail), Lycosidae, Mycetophilidae, Nocomis biguttatus, Oxidus gracilis, Plethodon albagula, Rana catesbeiana, Rana palustris, Sphaeroceridae, Tipulidae

DL-2: Ceuthophilus gracilipes, Cicurina sp., Culicidae, Cyprinidae, Diplopoda (troglobitic), Diplopoda sp. no. 2, Dolomedes sp., Dytiscidae, Eurycea lucifuga, Ictaluridae, Neotoma floridana, Periomyotis subflavus, Platynus sp., Rana catesbeiana, Rana sphenocephala, Sciaridae, Staphylinidae

DL-21: Amblyopsis rosae, Ceuthophilus sp., Corynorhinus townsendii ingens, Cottus carolinae, Japygidae, Lepomis sp., Myotis grisescens, Orconectes sp., Orconectes sp., Periomyotis subflavus

DL-22: Ambloplites constellatus, Ceuthophilus sp., Cottus carolinae, Cyprinidae, Eurycea lucifuga, Orconectes neglectus neglectus

DL-3: Araneae sp. no. 3, Arrhopalites sp., Carabidae, Ceuthophilus gracilipes, Cicurina sp., Collembola sp. no. 2, Dolomedes sp., Formicidae, Gastropoda (terrestrial snail), Isopoda (terrestrial), Lepidoptera, Macrocera nobilis, Megapallifera ragsdalei, Meta americana, Periomyotis subflavus, Plethodon albagula, Procyon lotor, Pseudoscorpiones, Psocoptera, Salticidae, Sayornis phoebe, Scarabaeidae, Sphaeroceridae, Staphylinidae, Stygobromus sp., Tomocerus sp.

DL-32: Araneae sp. no. 2, Caecidotea sp., Cathartes aura, Ceuthophilus sp., Dolomedes sp., Heleomyzidae, Ixodidae, Litocampa sp., Megapallifera ragsdalei, Mycetophilidae, Neotoma floridana, Oxidus gracilis, Periomyotis subflavus, Plethodon albagula, Pseudacris crucifer crucifer, Rana catesbeiana, Rana palustris, Rhagidiidae, Sminthuridae, Sphaeroceridae, Staphylinidae, Stygobromus sp., Tipulidae, Tomocerus sp. **DL-38:** Amblyopsis rosae, Cambarus subterraneus, Eptesicus fuscus, Eurycea spelaea, Heleomyzidae, Neotoma floridana, Periomyotis subflavus

DL-39: Culicidae, Eurycea lucifuga, Eurycea spelaea, Heleomyzidae, Macrocera nobilis, Mycetophilidae, Myotis grisescens, Myotis septentrionalis, Orconectes neglectus neglectus, Periomyotis subflavus, Procyon lotor, Rana palustris

DL-41: Araneae, Araneae sp. no. 2, Arrhopalites sp., Ceuthophilus gracilipes, Cicurina sp., Collembola sp. no. 2, Culicidae, Diptera sp. no. 3, Eurycea lucifuga, Formicidae, Gastropoda (terrestrial snail), Hesperochernes sp., Isopoda (terrestrial), Leiobunum sp., Lepidoptera, Lumbricidae, Megapallifera ragsdalei, Neotoma floridana, Oribatida, Oxidus gracilis, Periomyotis subflavus, Plethodon albagula, Procyon lotor, Psocoptera, Rhagidiidae, Sminthuridae, Staphylinidae, Staphylinidae sp. no. 2, Stygobromus sp., Tipulidae, Tomocerus sp., Trichoniscidae

DL-51: Arrhopalites sp., Caecidotea ancyla, Caecidotea stiladactyla, Eurycea longicauda melanopleura, Eurycea lucifuga, Heleomyzidae, Megapallifera ragsdalei, Oxidus gracilis, Plethodon albagula, Sphaeroceridae, Staphylinidae, Stygobromus sp., Tipulidae

DL-59: Acarina, Araneae sp. no. 2, Caecidotea stiladactyla, Caudata (larval), Ceuthophilus sp., Cicurina sp., Culicidae, Eurycea lucifuga, Eurycea spelaea, Gastropoda (terrestrial snail), Heleomyzidae, Isopoda (terrestrial), Leiobunum sp., Lepidoptera, Mycetophilidae, Onychiuridae, Oxidus gracilis, Periomyotis subflavus, Phoridae, Plethodon albagula, Psychodidae, Rana palustris, Sminthuridae, Sphaeroceridae, Staphylinidae sp. no. 2

DL-64: Cambarus sp. (stygobitic), Ceuthophilus sp., Cicurina sp., Culicidae, Dolomedes sp., Eurycea spelaea, Heleomyzidae, Inflectarius inflectus, Macrocera nobilis, Nematoda, Orconectes neglectus neglectus, Oxidus gracilis, Periomyotis subflavus, Platynus sp., Sayornis phoebe

DL-74: Amblyopsis rosae, Caecidotea antricola, Cambarus subterraneus, Culicidae, Eurycea lucifuga, Eurycea spelaea, Macrocera nobilis, Procyon lotor, Rana palustris, Rana sp., Sayornis phoebe, Stygobromus sp., Trichoceridae

DL-79: Araneae, Arrhopalites sp., Caecidotea stiladactyla, Cathartes aura, Cicurina sp., Collembola sp. no. 2, Eurycea lucifuga, Formicidae, Gastropoda (terrestrial snail), Heleomyzidae, Lumbricidae, Megapallifera ragsdalei, Meta americana, Mycetophilidae, Oribatida, Plethodon albagula, Pseudoscorpiones, Staphylinidae, Stygobromus sp., Tipulidae, Tricladida (stygobitic)

DL-8: Araneae, Caecidotea stiladactyla, Ceuthophilus gracilipes, Cicurina sp., Eptesicus fuscus, Gastropoda (terrestrial snail), Heleomyzidae, Isopoda (terrestrial), Leiobunum sp., Lithobiidae, Myotis grisescens, Noctuidae, Onychiuridae, Oxidus gracilis, Periomyotis subflavus, Plethodon albagula, Pseudoscorpiones, Psocoptera, Rhagidiidae, Sayornis phoebe, Sciaridae, Sminthuridae, Staphylinidae, Stygobromus onondagaensis, Tipulidae, Tomocerus sp., Trichoniscidae **DL-91:** Cambarus subterraneus

DL-92: Acarina, Caecidotea stiladactyla, Collembola, Culicidae, Gambusia affinis, Macrocera nobilis, Mycetophilidae, Oxidus gracilis, Platynus sp., Stygobromus ozarkensis, Tipulidae

DL-97: Caecidotea ancyla, Diplopoda (troglobitic), Diptera, Heleomyzidae, Lumbricidae, Macrocera nobilis, Orthoptera, Oxidus gracilis, Periomyotis subflavus, Stygobromus sp.

Krause Spring: Dugesia sp., Eurycea spelaea

Matthews et al. (1983) Spring # 12: Gammarus minus

Pitfall Cave: Araneae, Caudata (larval), Eurycea lucifuga, Eurycea spelaea, Heleomyzidae, Litocampa sp., Neotoma floridana, Periomyotis subflavus, Platynus sp., Rana catesbeiana, Rana palustris, Rhagidiidae Spring on Bob Kelley's Land: Amphipoda, Dugesia sp., Gambusia affinis, Lirceus sp.

Unnamed cave on Dry Creek: Cambaridae, Castor canadensis, Cottus carolinae, Culicidae, Eurycea longicauda melanopleura, Lepomis macrochirus, Oxidus gracilis, Platynus sp., Polydesmida, Rana clamitans melanota, Semotilus atromaculatus

Ellis County

Bowman Spring 1: Hyalella azteca

Dugger Spring 1: Cambaridae, Hyalella azteca

McCorkle Springs: Gambusia affinis, Hyalella azteca

OBS Spring # SPR05-05: Cambaridae, Hyalella azteca

OBS Spring # SPR05-06: Gambusia affinis, Hyalella azteca

Reininger Spring: Gambusia affinis, Hyalella azteca

Word Springs: Hyalella azteca

Greer County

Jester Cave: Ameiurus melas, Anthicidae, Araneae, Araneae sp. no. 2, Araneae sp. no. 3, Armadillidae, Cambaridae, Carabidae, Castor canadensis, Ceuthophilus sp., Chilopoda, Coleoptera, Coleoptera sp. no. 2, Collembola sp. no. 2, Corydalidae (larva), Corynorhinus townsendii pallescens, Culicidae, Deroceras laeve, Diplopoda, Diptera sp. no. 2, Dolomedes sp., Dytiscidae, Gerridae, Gerridae, Hirudinea, Isopoda (terrestrial), Leiodidae, Lepidoptera, Lumbricidae, Myotis velifer, Orconectes sp., Periomyotis subflavus, Phoridae, Physa virgata, Rana blairi, Rhagidiidae, Sayornis phoebe, Scaphinotus sp., Sphaeroceridae, Staphylinidae, Staphylinidae sp. no. 2, Tomocerus sp.

Johnston County

Big Spring: Gammarus lacustris

Deadman Spring: Caecidotea sp.

Inslee Spring: Gammarus lacustris

Martin Spring: Allocrangonyx pellucidus, Caecidotea acuticarpa, Hyalella azteca

Nelson Spring: Amphipoda (stygobitic), Caecidotea sp., Gammarus lacustris, Gastropoda (aquatic snail), Hirudinea, Orconectes sp., Plecoptera, Turbellaria

Rutherford Spring: Caecidotea sp.

Second spring upstream of Tishomingo National Fish Hatchery: Allocrangonyx pellucidus,

Amphipoda, Caecidotea acuticarpa, Orconectes sp.

Spring # 2 on Bruno's Land: Amphipoda, Caecidotea acuticarpa, Lirceus sp.

Spring on Easterling's Land: Amphipoda, Dugesia sp., Gambusia affinis, Gastropoda (aquatic snail), Percidae, Rana sphenocephala

Springbox upstream of Tishomingo National Fish Hatchery: Allocrangonyx pellucidus, Araneae sp. no. 2, Caecidotea acuticarpa, Loxosceles reclusa, Orconectes sp.

Twin Vulture Cave: Amphipoda, Caecidotea acuticarpa, Ceuthophilus sp., Coragyps atratus, Culicidae, Neotoma floridana

Unnamed cave on Oliver Ranch: Araneae, Araneae sp. no. 2, Araneae sp. no. 3, Carabidae, Ceuthophilus sp., Culicidae, Gastropoda (terrestrial snail), Neotoma floridana, Sphaeroceridae, Staphylinidae, Tomocerus sp.

Washington Spring: Amphipoda, Caecidotea sp., Gammarus sp., Plecoptera, Turbellaria

Kiowa County County

Dietrich's Spring: Cambaridae, Coleoptera, Gastropoda (terrestrial snail), Hyalella azteca, Physidae, Trichoptera

Turtle Spring: Acarina, Cordulegaster sp., Cyprinidae, Gastropoda (aquatic snail), Hirudinea, Lepomis sp., Percidae

Major County County

Nescatunga Cave: Ambystoma tigrinum, Corynorhinus townsendii pallescens, Stygobromus alabamensis Vickery Cave: Tadarida brasiliensis

Mayes County County

MY-12: Caecidotea sp., Caudata (larval), Causeyella sp., Ceuthophilus gracilipes, Dolomedes sp., Eurycea lucifuga, Eurycea spelaea, Heleomyzidae, Japygidae, Leiobunum sp., Onychiuridae, Plethodon albagula, Scarabaeidae, Sminthuridae, Sphaeroceridae

Roadside Park Spring: Crangonyx forbesi, Lirceus garmani

Murray County County

Blue Hole Spring: Cyprinidae, Dytiscidae

Crystal Cave: Achaeranea tepidariorum, Araneae sp. no. 2, Ceuthophilus sp., Coccinellidae, Diplopoda (troglobitic), Isopoda (terrestrial), Lumbricidae, Trichoniscidae

Cueva Cascavel: Araneae, Ceuthophilus sp., Coleoptera, Collembola, Crotalus sp., Gastropoda (terrestrial snail), Lumbricidae

Cueva Escorpion: Centruroides vittatus

Little Crystal Cave: Achaeranea tepidariorum, Araneae, Araneae sp. no. 2, Ceuthophilus sp., Crosbyella sp., Gastropoda (terrestrial snail), Heleomyzidae, Leiobunum sp., Lumbricidae, Neotoma floridana, Rana sp., Scolopendromorpha, Squamata (Snake), Tomocerus sp., Trichoniscidae

MU-2: Allocrangonyx pellucidus, Araneae, Argiope aurantia, Caecidotea acuticarpa, Ceuthophilus sp., Collembola sp. no. 2, Collembola sp. no. 3, Leiobunum sp., Oxidus gracilis, Periomyotis subflavus, Platynus sp., Rhagidiidae, Scolopendromorpha, Tomocerus sp., Trigenotyla vaga

Mystic Cave: Allocrangonyx pellucidus, Caecidotea acuticarpa, Caecidotea acuticarpa, Cambaridae, Collembola, Diplopoda (troglobitic), Diptera, Gastropoda (terrestrial snail), Ictaluridae, Lepomis sp.,

Periomyotis subflavus, Platynus sp., Platynus sp., Procambarus simulans, Trichoniscidae

Outlaw Cave: Achaeranea tepidariorum, Araneae sp. no. 2, Crosbyella sp., Culicidae, Eptesicus fuscus, Isoptera, Opiliones

Spring # 1 on Hickory Creek: Allocrangonyx pellucidus, Caecidotea acuticarpa, Gastropoda (aquatic snail)

Spring # 2 on Hickory Creek: Allocrangonyx pellucidus, Caecidotea sp., Cambaridae

Spring # 3 on Hickory Creek: Allocrangonyx pellucidus, Caecidotea sp.

Spring # 4 on Hickory Creek: Allocrangonyx pellucidus, Caecidotea sp.

Spring # 5 on Hickory Creek: Allocrangonyx pellucidus, Caecidotea sp.

Spring # 6 on Hickory Creek: Allocrangonyx pellucidus, Caecidotea sp.

Squeeze Box: Araneae, Araneae sp. no. 2, Armadillidium sp., Ceuthophilus sp., Collembola, Gastropoda (terrestrial snail), Gastropoda (terrestrial snail) no. 2, Trombidiidae

Wagon Wheel Cave: Culicidae, Opiliones

Ottawa County County

OT-19: Amblyopsis rosae, Amphipoda, Caecidotea sp., Chironomidae, Lirceus sp.

Unnamed Cave: Araneae, Araneae sp. no. 2, Caecidotea simulator, Ceuthophilus sp., Culicidae,

Diplopoda (troglobitic), Isopoda (terrestrial), Macrocera nobilis, Neotoma floridana, Oxidus gracilis, Periomyotis subflavus, Sciaridae

Pontotoc County

Byrds Mill Spring: Caecidotea acuticarpa

Coal Creek Cave: Allocrangonyx pellucidus, Caecidotea acuticarpa, Ceuthophilus sp., Culicidae, Diplopoda (troglobitic), Gastropoda (terrestrial snail), Gerridae, Lumbricidae, Orconectes sp., Sayornis phoebe

Coffee Pot Spring: Bezzia sp., Cambaridae, Cricotopus sp., Dixa sp., Larsia sp., Odontomyia sp., Pseudochironomus sp., Rheotanytarsus sp., Stenochironomus sp.

Deadman's Spring: Amphipoda (stygobitic), Caecidotea acuticarpa, Hyalella azteca

Sequoyah County

SQ-1: Corynorhinus townsendii ingens

Washita County

Lady's Cave: Ceuthophilus sp., Dolomedes sp., Isopoda (terrestrial), Platynus sp., Staphylinidae WA012: Araneae, Carabidae, Ceuthophilus sp., Coleoptera, Culicidae, Diplopoda, Diptera sp. no. 2, Diptera sp. no. 3, Gerridae, Gryllidae, Insecta, Isopoda (terrestrial), Lumbricidae, Oxidus gracilis, Phoridae, Staphylinidae

Woodward County

J. Selman Cave System: Acarina, Annelida, Araneae, Araneae sp. no. 2, Araneae sp. no. 3, Araneae sp. no. 4, Carabidae, Ceuthophilus sp., Coleoptera, Coleoptera sp. no. 2, Collembola, Deroceras laeve, Diplopoda, Diptera, Diptera sp. no. 2, Diptera sp. no. 3, Elimia sp., Hymenoptera, Insecta, Isopoda (terrestrial), Leiodidae, Lepidoptera, Oxidus gracilis, Phoridae, Physa sp., Platynus sp., Psephenidae, Staphylinidae sp. no. 2

Appendix 2: Taxonomic Composition of 50 Surveyed Springs

Appendix 2. Taxonomic composition of 50 surveyed springs. 'x' = present. Site numbers are given in Table A. Summary statistics are the total number of sites where a taxon occurs ('sites') and the total number of taxa present at a site ('richness'). Modified richness excludes microcrustaceans and double counts of both larvae and pupae for a single taxon.

				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Cnidaria	Hydroida	Hydridae	Hydra	X														Х	X	X		X	Х		
Turbellaria	Tricladida	Dugesiidae	planarians	X			х	х	Х		Х		Х	х						х	х	X	х	X	х
Annelida	Hirudinea	Glossiphoniidae	Batracobdella phalera				х																		
			Deserobdella picta		x																				
			Helobdella fusca																			X			
			Helobdella stagnalis																				х		
			Helobdella triserialis				х																		
			Placobdella ornata	X																					
			Placobdella papillifera																				X	\square	
		Eprobdellidae	Erpobdella nr. punctata																						
			Mooreobdella fervida																\square			X			
1			unidentified																	Х					
	Oligochaeta	Naididae	unidentified	X	Х		х							х		х	Х		X	Х		X	Х		х
		Tubificidae	Brachiura sowerbyi		х																				
			unidentified		X		х	х		X		х	Х	X		X	х	х	х	х		х	Х		х
	DUCK	Lumbriculidae	unidentified																						
	Polychaeta	Sabellidae	Manayunkia speciosa?																						
Nematoda		unidentified	unidentified				х							X		X	X	х	X	х		X	Х		
Entognatha	Collembola	Isotomidae	unidentified	X				X						Х			Х			Х					
Entognatha		Poduridae	Podura	X												X									
	The State of State	Sminthuridae	unidentified																	х	X		Х		
Insecta	Coleoptera	Dytiscidae	Agabus									X				X	Х	X				х		Х	
			Coptotomus																	Х					
			Hydaticus														X								
			Hydrobius													X									
			Hydroporus I				х		X			X	X												х
			Hydroporus II			х	х					X				X					X	X		X	х
			Hydroporus III				х	X								X									
			Hydroporus larvae															х							
	N COL		Hydrovatus																			X		X	х

			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16			19	20	21	2
		llybius																	Х	Х				
		Laccophilus			х	х				X		Х												
		Liodessus	X									х							Х			х	Х	
		Liodessus II																			х			
		Neoporus																						
1		Oreodytes													х		X							
		Uvarus													х	X								Γ
	the second second second second	unid dytiscid				1																		Γ
	Elmidae	Dubiraphia vittata		X																			_	Γ
		Microcylloepus pusillus																			х			Г
		Optioservus																						Γ
		Stenelmis		X														-	X					ſ
		unid (too small)																						ſ
	Gyrinidae	Dineutis		x																_				ſ
	Haliplidae	Haliplus												X								x	_	ľ
		Peltodytes	X	X	X	X		X											х		х		X	t
	Helophoridae	Helophorus									х	X												ſ
	Heteroceridae	unidentified																						ľ
	Hydrochidae	Hydrochus	X																					ſ
	Hydrophilidae	Berosus				X													х	Х	Х	х		ſ
		Crenitulus	X			X	X				х	X		х										ſ
		Cymbiodyta									х													ſ
		Enochrus	X								X	X							х		Х		х	ĺ
		Hydrochara	X																					ĺ
		Laccobius									X													ĺ
		Paracymus	X			X					X										Х			ĺ
		nr Paracymus																						ĺ
		Phaenonotum				X	X																	
		Tropisternus II																		X		Х		
		Tropisternus III	X	X	X	X		X		X		X						X				X		ſ
		Tropisternus (larvae)	-			-	X	1	-								X							ľ
	Limnichidae	Limnichus	-		x	x	x	x	-	X	x		x	x	-	-		X	X	x	х			ſ
	Noteridae	Suphisellus			-		1	-		X														ľ
	Psephenidae	Ectopria nervosa	-	1	-			-	1															ľ
	Scirtidae	Microcara	-	-	-		-	1	1	1														ľ
	unidentified	immature larvae	-	-	-	-	-	1	1	1	-		-		-	1	1	-	-	-			_	ľ

				1	2	3	4	5	6	7	8	9	10	11	12		14		16	17	18	19	20	21	22
	Diptera	Ceratopogonidae	Bezzia/Palpomyia	X		_		х		_		х			Х	х		х				Х	х	Х	
			Dasyhelea																х				Х		
			others	Х	Х	х	Х		Х	Х	Х				Х	х	х			Х	Х	X	X	Х	
		Chironomidae	Orthocladinae	X			х	х			х	х	х	X	х	х	Х	Х	х	Х	Х		X	Х	
			Tanypodinae	Х	х	х	Х					х	X	X	х	х	х	Х	х	Х	Х		X	х	X
			Chironominae	X	х	х	х	Х	Х	х		х	Х	X	X	х	X	X	Х	Х	Х		X	Х	X
			unid. small larvae	Х		Х					Х		Х		X										
			pupae				Х										X	X							>
1.1		Culicidae	Anopheles		X	х		х	X		х		X	X		X		X	X				X		>
			Culex															X	X						1
			Culiseta																						
			pupae															X	X	х					
	1.	Dixidae	Dixa								х					1									
			Dixella	X				х					X	X		X				х			X	X	>
	1		pupae															X		х	х		X		
		Empididae	Chelifera										X												
			Hemerodromia	X			х																		
		Ephydridae	Lemnaphila																						>
	and the second		Parydra																						
			Pelina																						
			Scatella																						
			unidentified					х		X															
		Muscidae	unidentified														-								
		Psychodidae	Pericoma/Telmatoscopus																						
			Psychoda	X						X									X				х	Х	
			рира														Х								
		Ptychopteridae	Ptychoptera																					Х	
		Sciomyzidae	Sepedon/Sepedomenerus																						
		Simuliidae	Simulium	X													X			х			X	Х	
		Stratiomyidae	Caloparyphus							X		X													
			Euparyphus							х															
			Myxosargus				х	x	X		x			X											
			Nemotelus																						T
			Odontomyia (Catatasina)							x															
			Odontomyia/Hedriodiscus	X															х				X		>
			Stratiomys				X			X														X	

				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
			unid	_									1.			_				_			_	\rightarrow	_
		Tabanidae	Chrysops			Х	х					_								Х	Х			\rightarrow	_
		Tipulidae	Gonomyia							Х														$ \rightarrow $	
			Holorusia										Х												
			Limonia					-											Х						
			Pseudolimnophila					Х																	
			Tipula	X	х				Х		Х	Х				Х		Х	X						
	and the second		Ulomorpha																						Х
			pupae/unidentified										-				х				х				
		unidentified																							
Eph	nemeroptera	Baetidae	Baetis										X										X		
			Callibaetis			х	х	х				х	х	X	х	х			X	X	X		x		Х
		Caenidae	Caenis												х										
		Ephemerellidae	Hexagenia	X																					
		Heptageniidae	Leucrocuta																						
			Stenacron																						
		Leptophlebiidae	Paraleptophlebia													х									
Her	miptera	Belostomatidae	Belostoma / Abedus	X																\square	Х		X	X	
		Corixidae	Hesperocorixa			х																			
			Sigara	X					Х		Х	х	X												
			Trichocorixa				х	X																	
5			unidentified															X							
		Gelastocoridae	Gelastocoris																						
		Gerridae	Aquarius	X	X	X	х	X	X		X		x	х				х	X		X		X		
			Gerris		X						X				х	X		х			X				
			Limnoporus													X	X								
			Trepobates		X	X	X	X	X		Х		X	Х	х										
			Rheumatobates																						
			Trepobates													X							х		
		Hebridae	Hebrus							Х		X													
		10011000	Merragata	X											x								X		
		Hydrometridae	Hydrometra										-										X		
		Mesoveliidae	Mesovelia	X	1		-			х					x			1					X		
		Notonectidae	Notonecta		-	x	-				x														_
		Pleidae	Paraplea		-	-							-		x			-							x
		Veliidae	Microvelia	x	-	x	x	x	x		x	x	x	X		x	X	x	x	x	X	X	X	x	X

				1		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
			Platyvelia	X	X		Х																	х
		Seat a sec	Rhagovelia		Х				Х		х									х				
	Lepidoptera	Pyralidae	Paraponyx	X																				
			Mun./Syn./Neocat.																					
_			unidentified	X																				Х
_	Megaloptera	Sialidae	Sialis												X									
	Odonata	Aeshnidae	Aeshna				Х	х						х				x		x		x	X	
1.1			Anax																					
			Boyeria																	-	_			_
			unidentified																					
		Calopterygidae	Calopteryx				х													x				
			Hetaerina	X																X		х		
		Coenagrionidae	Argia	X	X		х	X		x	X	x	X	х			x	x	X	x	x	X	x	х
			Coenagrion/Enallagma																	-			_	
	- Contractor		Enallagma			X									х						_			
			Enallagma/Ishnura	X		X																		
			unidentified		1			х																
		Corduliidae	Epitheca (Epicordulia)												х									-
			Didymops transversa												х									
			Somatochlora				х																	
		Gomphidae	Erpetogomphus																					
			Gomphus																					
			Progomphus														-			X				
		Lestidae	Archilestes			x					X	X	х									х		
		Libellulidae	Dythemis		X																			
			Erythemis	X							X				Х						х		х	
			Erythrodiplex																					х
			Libellula															X						
			Perithemis																					
			Plathemis																			χ		
			Sympetrum											-										
			unidentified												х									
	Orthoptera	Tetrigidae	unidentified		-							x												
	Trichoptera	Helicopsychidae	Helicopsyche	X			x						х							-				
-		Hydropsychidae	Cheumatopsyche														x			x		x	x	
			Diplectrona	-	-		-	-						-		-				-				

				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
			unidentified juveniles																						
		Hydroptilidae	Hydroptila	X			X					х											X		
			Ochrotrichia																X	Х			Х		
			Oxyethira	X																			X		
			рира																						
		Lepidostomatidae	Lepidostoma																						
		Leptoceridae	Nectopsyche				Х													х					_
		Limnephidae	Pycnopsyche		X																				
		Molannidae	Molanna										-												
		Philopotamidae	Chimarra															X							_
			Wormaldia															X							_
		Polycentropidae	Polycentropus																						_
		Psychomyidae	Psychomyia																						
		unidentified	pupae																						_
Crustacea	Amphipoda		cave amphipod																						Π
		Crangonyctidae	Crangonyx forbesi																						
		Gammaridae	Gammarus																						
	and see a	Talitridae	Hyalella azteca	X	X	Х	х	х	X		X		X		X					х	X	X	х	Х	X
	Isopoda	Asellidae	Lirceus hoppinae															X	X						
			Caecidotea						X																
			Caecidotea acuticarpa																						
	Ostracoda		type A																	Х	X	X	Х	Х	>
			type B					Х							X			X					х	-	
	1.		type C											X		X				х				Х	
			type D				1.12															Х	х	_	
			type E																					Х	>
			type F							X									X	Х	Х	X		Х	
			type G																						
			type H																						
			type I																						
			type J																						
			type K							x															
			type L																						
			type M			_		-																	
	Decapoda		Orconectes nais		-		х							1											-
			Orconectes neglectus					-				-				-									

				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
			O. palmeri longimanus								х		X			х									
			Orconectes virilis	X	X																				
			Orconectes sp.					X						х											
			Procambarus simulans			х										х		х	х	Х					
	Copepoda	Cyclopoida	copepod	X		х	х	X					Х	Х	Х	х		X		х		х	х		
		Harpacticoida	copepod	X		х		х	х		х	х	Х			х	X		х	х	х	х	х		
	Cladocera		unidentified															X							
	Acari		misc. mites			х	х	х		х		X	х			х		X				X	X		x
Bivalvia		Sphaeriidae	unidentified	X		х	х		X		X			х	х					x	х	X	х	X	X
Gastropoda		Ancylidae	Ferrissia	X		х																			
		Hydrobiidae	unidentified		x																-		-	-	
		Lymnaeidae	Fossaria	x	x	х			x	1										X	x			x	
		Physidae	Physa	X	x	х	х	_				x	x	x	x	x	X	X	x	X	x	x	x	-	x
		Planorbidae	Gyraulus				х											X						-	
			Helisoma	X		х														x	x			-	x
			Menetus	X																					
			Planorbula				х	x										\square							
			Promenetus																X						
		Pleuroceridae	Elimia																						
		Pomatiopsidae	Pomatiopsis																						
	1		richness	53	27	30	47	31	20	16	26	28	32	23	27	31	21	34	28	47	29	35	50	31	3
_			richness (modified)	51	27	27	45	28	19	13	25	26	29	21	24	27	20	30	26	42	26	29	44	27	28

Appendix 2. Taxonomic composition of 50 surveyed springs. 'x' = present. Site numbers are given in Table A. Summary statistics are the total number of sites where a taxon occurs ('sites') and the total number of taxa present at a site ('richness'). Modified richness excludes microcrustaceans and double counts of both larvae and pupae for a single taxon.

				23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40 4	1 30	0 301
Cnidaria	Hydroida	Hydridae	Hydra	X		х	х	х	X		X					х		х		Х			X
Turbellaria	Tricladida	Dugesiidae	planarians	X					X	X	X			X	х	х	x	x		х		x	
Annelida	Hirudinea	Glossiphoniidae	Batracobdella phalera																				
			Deserobdella picta																				
			Helobdella fusca																				
			Helobdella stagnalis																-				
			Helobdella triserialis																				
			Placobdella ornata																				
			Placobdella papillifera																				
		Eprobdellidae	Erpobdella nr. punctata												х						x		
			Mooreobdella fervida	X											х								
			unidentified																				
	Oligochaeta	Naididae	unidentified		X	X	x	X	X		X	X	Х			х	х			х	X		
		Tubificidae	Brachiura sowerbyi																				
			unidentified	X	X	X	X	х		X	X	X	х		х		Х	X	х	Х	x	x	
		Lumbriculidae	unidentified												X								
	Polychaeta	Sabellidae	Manayunkia speciosa?															X					
Nematoda		unidentified	unidentified	X			X			X			Х					X	X		X		
Entognatha	Collembola	Isotomidae	unidentified	X		Х	X		X			X				Х	X			X			
Entognatha		Poduridae	Podura					х	Х								X		Х				
		Sminthuridae	unidentified																				-
Insecta	Coleoptera	Dytiscidae	Agabus	X	Х	X																X	
			Coptotomus																				
			Hydaticus																				
			Hydrobius																				
			Hydroporus 1																				
			Hydroporus II																				
			Hydroporus III		X	x				X													
			Hydroporus larvae																				
			Hydrovatus																				

		23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40 4	1 300	30
	llybius																				X
	Laccophilus	X								X											
	Liodessus																				
	Liodessus II																				
	Neoporus						X														
	Oreodytes			х		X	X	х			1					X					
	Uvarus																				
	unid dytiscid					X												X			
Elmidae	Dubiraphia vittata	X	X	X																	
	Microcylloepus pusillus			X			X							X							1
	Optioservus													X							
	Stenelmis			X			X							X							
	unid (too small)		X											X							
Gyrinidae	Dineutis																				
Haliplidae	Haliplus																				
	Peltodytes	X	X			X	\square	X	X	X											1
Helophoridae	Helophorus																				
Heteroceridae	unidentified																				
Hydrochidae	Hydrochus																				
Hydrophilidae	Berosus	X	X			X															
	Crenitulus												X								
	Cymbiodyta				X	X															
	Enochrus														-						
	Hydrochara														X						
	Laccobius																				
	Paracymus					X															1
	nr Paracymus																				
	Phaenonotum																				
 	Tropisternus II		1							X											
	Tropisternus III	X	\square		X															X	X
	Tropisternus (larvae)		-		-	x	X			-			X							X	X
 Limnichidae	Limnichus	X	-				X		1			1		-	1						
 Noteridae	Suphisellus		-			-															
Psephenidae	Ectopria nervosa	-			-	-	-	-		1						x		5			1
Scirtidae	Microcara	-	-												-						1
 unidentified	immature larvae	-	-				-	1			1	1			x						1

				23						29	30	31		33	34	35	36			39	40	41	300	30
	Diptera	Ceratopogonidae	Bezzia/Palpomyia		х	Х	х	х	х			х	Х					Х	X					
			Dasyhelea						Х				Х											
			others	X	X	Х	х		х		х	Х	Х		х	х								
		Chironomidae	Orthocladinae	X	Х	Х	х	Х	Х		х	х	Х		Х	Х	Х		X	Х	X		х	Х
			Tanypodinae	X	х	Х		Х	Х	Х	Х	Х	Х	х		х	Х	х	X		X	X		Х
			Chironominae	Х	X	Х	х	Х	Х	Х	Х	х	Х		х	Х	X	X	X	Х	X	X	х	Х
			unid. small larvae		X											X	X					X		
			pupae	X	X	х	х	Х	Х	Х	х	х	X			X	X		X		X	X		X
		Culicidae	Anopheles																	X				
18.11			Culex					Х				х												
			Culiseta																				х	Х
			pupae										X											
		Dixidae	Dixa																	X		X		
			Dixella						х															
			pupae																					
		Empididae	Chelifera													X	X	X				X		
			Hemerodromia												х	X				X				
		Ephydridae	Lemnaphila																					
			Parydra														X							
			Pelina									Х												
			Scatella												X								-	
			unidentified																					
		Muscidae	unidentified										X		X									
		Psychodidae	Pericoma/Telmatoscopus		1-1		х						X				X							
			Psychoda										X							X				
			pupa						Х				X											
_		Ptychopteridae	Ptychoptera																					
-		Sciomyzidae	Sepedon/Sepedomenerus	X		X						X												
		Simuliidae	Simulium		x				X							X							х	
		Stratiomyidae	Caloparyphus																					
			Euparyphus						X											X				
_			Myxosargus																					
			Nemotelus									х	X											
			Odontomyia (Catatasina)																					
-			Odontomyia/Hedriodiscus																					
			Stratiomys		1						x	X												

			23	24	25	26	27	28	29	30	31	32	33	34	35	36		38	39	40	41	300	301
		unid															Х						
	Tabanidae	Chrysops	X									Х										-	
	Tipulidae	Gonomyia																					
		Holorusia										Х											
		Limonia																	Х				
		Pseudolimnophila								Х	х	Х											
		Tipula			х							Х											
		Ulomorpha	X																				
		pupae/unidentified	X									х						Х			х		
	unidentified											х											
Ephemeroptera	Baetidae	Baetis		X	X	100		X					х		х	X	х						
		Callibaetis	X	X		х	X	X	X		х											х	x
	Caenidae	Caenis		X	X																		
	Ephemerellidae	Hexagenia																					
	Heptageniidae	Leucrocuta	-													x							
		Stenacron								х			х		х								
	Leptophlebiidae	Paraleptophlebia					1																
Hemiptera	Belostomatidae	Belostoma / Abedus	X								х												
	Corixidae	Hesperocorixa																					
		Sigara						X								X					х		
		Trichocorixa	X																				
		unidentified																				х	
	Gelastocoridae	Gelastocoris									X					-							
	Gerridae	Aquarius	X	X		X		X		Х		X	х			X							X
		Gerris	X		X	X			Х				х			X	X				Х		
		Limnoporus					X								X								
		Trepobates	-	X																			
		Rheumatobates	X		X																		
		Trepobates	X																				
	Hebridae	Hebrus																					
		Merragata		\vdash																			
	Hydrometridae	Hydrometra																					
	Mesoveliidae	Mesovelia		1		-																	
	Notonectidae	Notonecta		1		-		-									-					х	X
	Pleidae	Paraplea														-							
	Veliidae	Microvelia	X	-	x	-		v	x	x	-	x	_	x	x	x	х	-	х	x	x		

			23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40 4	1 30	0 30
		Platyvelia		_										_								
		Rhagovelia		х														_			_	1
Lepidoptera	Pyralidae	Paraponyx											-								_	
		Mun./Syn./Neocat.									Х									_		
		unidentified	X																			
Megaloptera	Sialidae	Sialis	X	X	X												х					
Odonata	Aeshnidae	Aeshna	X						X						X							
		Anax																				X
		Boyeria										-										
		unidentified																				
	Calopterygidae	Calopteryx	X	X	X	X																
		Hetaerina	X															-				
	Coenagrionidae	Argia	X	X	X	х	X	X	X	х					X		X		X			X
		Coenagrion/Enallagma						X														X
		Enallagma												1								
		Enallagma/Ishnura																				
		unidentified							X													
	Corduliidae	Epitheca (Epicordulia)																				
		Didymops transversa																				
		Somatochlora								X												
	Gomphidae	Erpetogomphus	X																			
		Gomphus	X																			
		Progomphus																				
	Lestidae	Archilestes			X	X			X	X												
	Libellulidae	Dythemis																				
		Erythemis																				
		Erythrodiplex																				
	. ·	Libellula																				X
 		Perithemis						X														
		Plathemis	X					1			Γ											1
		Sympetrum					1				X											
		unidentified	-													1						
 Orthoptera	Tetrigidae	unidentified			1		x															
 Trichoptera	Helicopsychidae	Helicopsyche			1		1								X	X						
 Thereptora	Hydropsychidae	Cheumatopsyche	X	x	x											x						
 	, i j di opoj of i duo	Diplectrona		-			1		1	1		1	x		X		X					

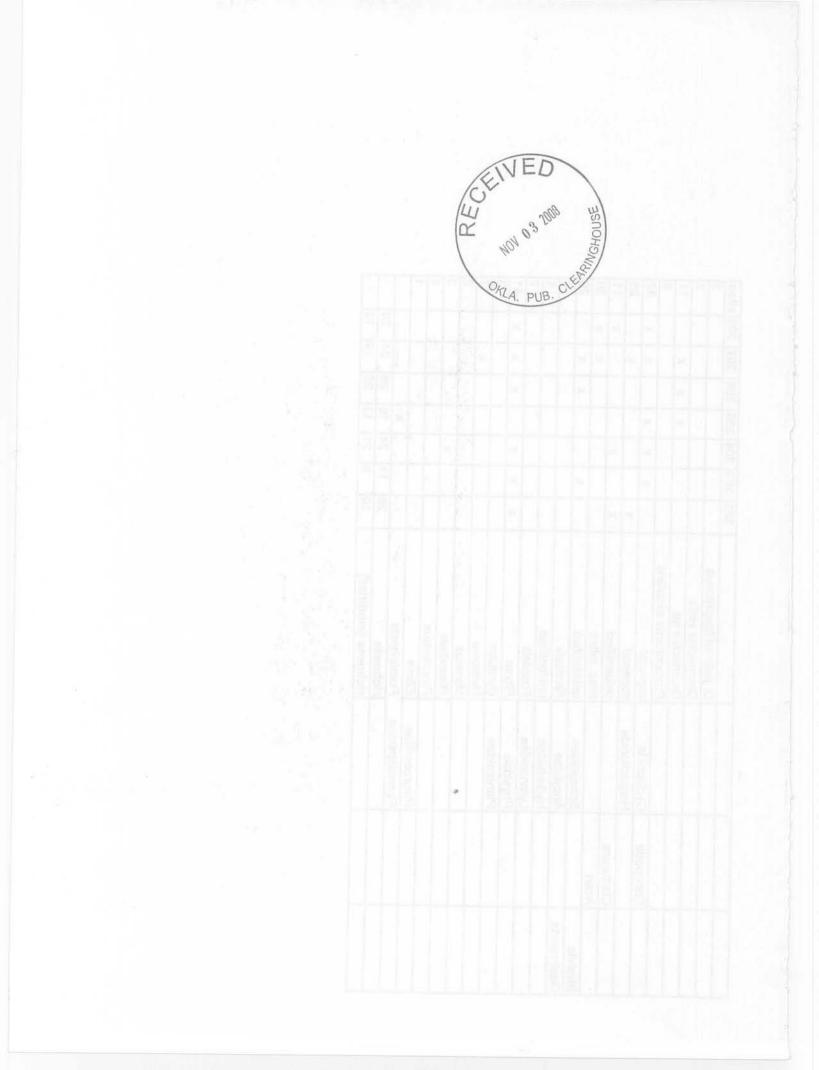
				23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	300	30
			unidentified juveniles			Х			X							х								
		Hydroptilidae	Hydroptila	X	X						X	х					х					х		
			Ochrotrichia		X	х										х								
			Oxyethira													х	х							
			pupa	X							X													
		Lepidostomatidae	Lepidostoma															X						
		Leptoceridae	Nectopsyche																					
		Limnephidae	Pycnopsyche																					
		Molannidae	Molanna															X						
		Philopotamidae	Chimarra																					
			Wormaldia							3														
		Polycentropidae	Polycentropus							X				X		X						х		
		Psychomyidae	Psychomyia														X							
		unidentified	pupae													X	X							
Crustacea	Amphipoda		cave amphipod										X											
		Crangonyctidae	Crangonyx forbesi												x									
		Gammaridae	Gammarus			х								x		X	X				х	х		
		Talitridae	Hyalella azteca	X	x			х	x		x		X							-				
	Isopoda	Asellidae	Lirceus hoppinae							-			X		x	x	x		x	х	x	х		
			Caecidotea																					
			Caecidotea acuticarpa																					
	Ostracoda		type A	X					x	-										-			х	X
			type B														-							
			type C																					
			type D																					
			type E							X							X							
			type F	X			х	х		X	X					X			X				х	
			type G				X	х																х
			type H										X			X								
			type I				х		X							X				х				
			type J					х								x	x					х		
			type K				_	-												-				
			type L		-																		х	
		1.0	type M	-	-	-							-						-	-				
	Decapoda		Orconectes nais	-	-	-	-		-	-	-	-	-	-			-							
	Dooupoud		Orconectes neglectus	-	-	-	-		-	-	-	-	-	x	-	-	x	x	x	х				

				23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	300	301
			O. palmeri longimanus																					
			Orconectes virilis																					
1		1	Orconectes sp.	X	X						X					Х	х	х						
			Procambarus simulans			х		х		X														
	Copepoda	Cyclopoida	copepod	X	X	X	х	х	х	X	X	X	X		х					х		х	х	х
		Harpacticoida	copepod	X		X	х		X		X		X		Х	Х	х		х	х		X		
	Cladocera		unidentified				х			X	X	X									х		х	X
	Acari		misc. mites	X	X		х	х	X	X	X		X		Х	х	х	X	X	X		X	х	X
Bivalvia		Sphaeriidae	unidentified	X		X			X		X	x	X		Х			X	X	X				
Gastropoda		Ancylidae	Ferrissia							X	-										х			
		Hydrobiidae	unidentified																					
		Lymnaeidae	Fossaria				_												-					
		Physidae	Physa	X	X	X	х	x	x	x	X	X	x		X	х	х			X		X	х	X
		Planorbidae	Gyraulus																	X				
			Helisoma					-			x													
			Menetus				-																х	
			Planorbula																					
		-	Promenetus																					-
		Pleuroceridae	Elimia													X								
		Pomatiopsidae	Pomatiopsis																					
			richness	51	33	36	27	29	39	25	30	28	33	10	21	41	36	24	15	26	13	21 17	18	2
			richness (modified)	46	31	34	20	24	34	20	25	26	29	10	18	34	31	23	12	22	12	17	12	

Appendix 2. Taxonomic composition of 50 surveyed springs. 'x' = present. Site numbers are given in Table A. Summary statistics are the total number of sites where a taxon occurs ('sites') and the total number of taxa present at a site ('richness'). Modified richness excludes microcrustaceans and double counts of both larvae and pupae for a single taxon.

				302	303	304	305	306	307	308	sites
Cnidaria	Hydroida	Hydridae	Hydra		1	1					16
Turbellaria	Tricladida	Dugesiidae	planarians	X		х		х	х	х	29
Annelida	Hirudinea	Glossiphoniidae	Batracobdella phalera								1
		1	Deserobdella picta								1
			Helobdella fusca								1
			Helobdella stagnalis								1
			Helobdella triserialis								1
			Placobdella ornata								1
			Placobdella papillifera				1				1
		Eprobdellidae	Erpobdella nr. punctata								2
			Mooreobdella fervida								3
			unidentified								1
	Oligochaeta	Naididae	unidentified		х	х			х		26
		Tubificidae	Brachiura sowerbyi								1
			unidentified				_				31
		Lumbriculidae	unidentified				X				2
	Polychaeta	Sabellidae	Manayunkia speciosa?								1
Nematoda		unidentified	unidentified	X							17
Entognatha	Collembola	Isotomidae	unidentified				X		Х		15
Entognatha		Poduridae	Podura								6
	100000000000000000000000000000000000000	Sminthuridae	unidentified								3
Insecta	Coleoptera	Dytiscidae	Agabus	X		X					12
			Coptotomus							_	1
			Hydaticus								1
			Hydrobius							X	2
			Hydroporus I								5
			Hydroporus II								8
			Hydroporus III								6
			Hydroporus larvae					х			2
			Hydrovatus								3

			302	303	304	305	306	307	308	sites
		llybius								3
		Laccophilus	X							7
		Liodessus								5
		Liodessus II								1
		Neoporus	-		х			-		2
		Oreodytes								7
		Uvarus								2
		unid dytiscid					X			
	Elmidae	Dubiraphia vittata	1				X			5
1		Microcylloepus pusillus								4
		Optioservus				-				1
		Stenelmis								5
		unid (too small)								1
	Gyrinidae	Dineutis								-
	Haliplidae	Haliplus			X					:
		Peltodytes					X	X		1
	Helophoridae	Helophorus								:
	Heteroceridae	unidentified			X					
	Hydrochidae	Hydrochus			X					1
	Hydrophilidae	Berosus			X					
		Crenitulus					X			
		Cymbiodyta								
		Enochrus								
		Hydrochara								
		Laccobius			1					
		Paracymus								
		nr Paracymus					X			
		Phaenonotum								
		Tropisternus II		X	X					
		Tropisternus III	X				X			1
		Tropisternus (larvae)	X		X		X	X		1
	Limnichidae	Limnichus					X	X		1
	Noteridae	Suphisellus	-							
	Psephenidae	Ectopria nervosa								
	Scirtidae	Microcara						X	X	
	unidentified	immature larvae								


			302	303	304	305	306	307	308	sites
Diptera	Ceratopogonidae	Bezzia/Palpomyia	X							19
		Dasyhelea								4
		others		х						26
	Chironomidae	Orthocladinae			х	X	Х			36
		Tanypodinae	X			X	Х			38
		Chironominae	X	х	х	X	Х	Х		46
		unid. small larvae								g
		pupae								20
	Culicidae	Anopheles					х	х		15
		Culex							X	5
		Culiseta	X					1		3
		pupae	X							3
	Dixidae	Dixa				x				4
		Dixella	X					х		12
		pupae								4
	Empididae	Chelifera								1
		Hemerodromia								5
	Ephydridae	Lemnaphila								1
		Parydra								1
		Pelina								
		Scatella								1
		unidentified								2
	Muscidae	unidentified								2
	Psychodidae	Pericoma/Telmatoscopus								
		Psychoda						2		1
		pupa								3
	Ptychopteridae	Ptychoptera	-							3
	Sciomyzidae	Sepedon/Sepedomenerus								3
	Simuliidae	Simulium								9
	Stratiomyidae	Caloparyphus								2
		Euparyphus								
		Myxosargus								5
		Nemotelus			1					2
		Odontomyia (Catatasina)								-
		Odontomyia/Hedriodiscus								4
		Stratiomys	x							6

			302	303	304	305	306	307	308	sites
		unid								1
	Tabanidae	Chrysops				1.11				6
	Tipulidae	Gonomyia								1
		Holorusia	X				х			4
		Limonia								2
		Pseudolimnophila								4
		Tipula								10
		Ulomorpha		i						2
		pupae/unidentified								6
	unidentified									1
Ephemeroptera	Baetidae	Baetis								9
		Callibaetis	X		х				х	25
	Caenidae	Caenis	X		1				X	5
	Ephemerellidae	Hexagenia								1
a second as a second	Heptageniidae	Leucrocuta								1
		Stenacron								3
	Leptophlebiidae	Paraleptophlebia								1
Hemiptera	Belostomatidae	Belostoma / Abedus								6
	Corixidae	Hesperocorixa								1
		Sigara			х	X	х			11
		Trichocorixa								3
		unidentified								2
	Gelastocoridae	Gelastocoris								1
	Gerridae	Aquarius	X			х	х	х		26
		Gerris			X					15
		Limnoporus								4
		Trepobates								10
		Rheumatobates		1					х	2
		Trepobates							х	4
	Hebridae	Hebrus								2
		Merragata								3
	Hydrometridae	Hydrometra								1
	Mesoveliidae	Mesovelia							х	5
	Notonectidae	Notonecta	X	х	x	x	х			8
	Pleidae	Paraplea								2
 	Veliidae	Microvelia		х	х			х		35

				302	303	304	305	306	307	308	sites
			Platyvelia								4
			Rhagovelia								5
	Lepidoptera	Pyralidae	Paraponyx								
			Mun./Syn./Neocat.								1
			unidentified						_		3
	Megaloptera	Sialidae	Sialis								Ę
	Odonata	Aeshnidae	Aeshna								1.
			Anax								
			Boyeria						х		
			unidentified			х					1
		Calopterygidae	Calopteryx								6
			Hetaerina								4
		Coenagrionidae	Argia				х	х		X	33
			Coenagrion/Enallagma							X	:
			Enallagma			х					
			Enallagma/Ishnura								
			unidentified								1
		Corduliidae	Epitheca (Epicordulia)								
			Didymops transversa								1
			Somatochlora					-			1
		Gomphidae	Erpetogomphus								
			Gomphus								
			Progomphus								
		Lestidae	Archilestes					х			1(
		Libellulidae	Dythemis								
			Erythemis		-					X	1
			Erythrodiplex		1						
			Libellula	x	X						-
			Perithemis							X	
			Plathemis								
			Sympetrum								
-			unidentified								
-	Orthoptera	Tetrigidae	unidentified					х			
	Trichoptera	Helicopsychidae	Helicopsyche	-				X			
	Thereptera	Hydropsychidae	Cheumatopsyche	-		-			-		1
		inydropsychidde	Diplectrona	-		-					

				302	303	304	305	306	307	308	sites
			unidentified juveniles								3
		Hydroptilidae	Hydroptila						х		11
			Ochrotrichia								6
			Oxyethira								4
			pupa								2
		Lepidostomatidae	Lepidostoma								1
		Leptoceridae	Nectopsyche								2
		Limnephidae	Pycnopsyche								1
		Molannidae	Molanna								1
		Philopotamidae	Chimarra								1
			Wormaldia								1
		Polycentropidae	Polycentropus								4
		Psychomyidae	Psychomyia								1
		unidentified	pupae								2
Crustacea	Amphipoda		cave amphipod	1							1
		Crangonyctidae	Crangonyx forbesi								1
		Gammaridae	Gammarus								6
		Talitridae	Hyalella azteca				х		х	X	24
	Isopoda	Asellidae	Lirceus hoppinae								10
			Caecidotea								1
			Caecidotea acuticarpa							X	1
	Ostracoda		type A						X		11
			type B				X				Ę
			type C	X							E
			type D	X							3
			type E								4
			type F	X	X	X		X	х		19
			type G	1.11			1				2
			type H								1
			type I				X				
			type J							X	E
			type K								1
			type L				-				1
			type M	x							
	Decapoda		Orconectes nais	-							
	Decapoua		Orconectes neglectus			-	-			-	1

				302	303	304	305	306	307	308	sites
			O. palmeri longimanus							-	3
			Orconectes virilis								2
			Orconectes sp.				х	х	х	18	11
			Procambarus simulans								8
	Copepoda	Cyclopoida	copepod		х	х	X		х	х	32
		Harpacticoida	copepod	X					Х		28
	Cladocera		unidentified	X		X				X	11
	Acari		misc. mites		100				х	X	30
Bivalvia		Sphaeriidae	unidentified		х			х	X		26
Gastropoda		Ancylidae	Ferrissia								4
		Hydrobiidae	unidentified								1.1
		Lymnaeidae	Fossaria								7
		Physidae	Physa	X	х	X		х	х	X	41
		Planorbidae	Gyraulus								3
			Helisoma						х		7
			Menetus								2
			Planorbula			X					3
			Promenetus								1
		Pleuroceridae	Elimia								1
		Pomatiopsidae	Pomatiopsis				X				
			richness	26	11	24	16	26	24	20	
			richness (modified)	19	9	21	13	25	19	16	

