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EXECUTIVE SUMMARY: 

Bobcats (Lynx rufus) are an important resource in Oklahoma as one of the most harvested 
furbearer species in the state and due to the ecological and environmental services they 
provide as predators of small mammals. However, their secretive nature makes them difficult 

to monitor with, for example, roadside surveys, and data from fur harvest may be biased with 
respect to where bobcats are harvested and factors such as weather during trapping season 

and fur prices. We conducted a study testing the use of hair snares and occupancy modeling 
as a method to assess bobcat population trends across the state, and the use of hair snares with 
genetic capture-recapture methods to estimate bobcat population sizes in three Wildlife 

Management Areas (WMAs) representing different ecoregions in Oklahoma. We used 
camera traps on the WMAs to assess the efficacy of the hair snares in detecting bobcats on 

the WMAs. In addition, we used small mammal trapping to ascertain the relationship 
between prey abundance and bobcat density among the WMAs. 
 

While the hair snare cubbies were successful in sampling mammal hair, with 25-28% 
identified as bobcat using genetic analyses, overall accuracy of morphological identification 

of hairs was low when compared against genetic analysis of the same samples. For this 
reason, hair snares as a stand-alone method for monitoring bobcat populations without 
genetic backup may not be useful without highly trained technicians (forensic or museum 

professionals). Camera trap methods involving a platform for images from trail cameras 
submitted by the public, as well as targeted camera-trap placements by agency personnel, 

combined with occupancy modeling might be a better method for monitoring bobcats 
independent of harvest data. However, based on conservative identifications of snared bobcat 
hair and occupancy modeling we were able to develop a probability of occupancy map for 

most of the state. Because the standard error was high, particularly in two regions of the state, 
likely due to insufficient resampling and bobcat detections, occupancy predictions should be 

used with caution. The lack of cubby placements within certain regions of the state means 
those parts of the map are particularly less supported in terms of predictions of bobcat 
occupancy. 

 
Due to small sample sizes and low success rate of genetic analyses of hair and scat samples 

from the WMAs, genetic capture-recapture was not a viable method for estimating bobcat 
population sizes in these intensive study areas. However, we were able to estimate bobcat 
population densities on the WMAs with capture-recapture analysis using the trail cameras set 

up to assess efficacy of hair snares for capturing bobcat hair. We identified individual bobcats 
based on unique natural pelage patterns. Using this method, we estimated bobcat density at 

James Collins WMA to be 0.33 bobcats/km2, at Packsaddle 0.14 bobcats/km2, and 0.02 



bobcats/km2 at Sandy Sanders. These densities fall within the range of previously estimated 
bobcat densities in different parts of Texas. 

 
While small mammal abundance was highest at Sandy Sanders WMA and lowest at James 

Collins WMA, differences in small mammal abundance were not statistically significant. 
Both species richness and Shannon diversity were significantly higher at Packsaddle WMA. 
Activity patterns of bobcats and coyotes, based on camera trap data, indicate that bobcats and 

coyotes are not avoiding potential competition by being active at different times, especially 
on James Collins WMA in eastern Oklahoma where overlap in activity periods was >90%. 

Overlap in activity periods between bobcats and coyotes was higher than between bobcats 
and lagomorphs (64% - 77%) on all three WMAs. Overlap of coyote and lagomorph activity 
patterns on Packsaddle and Sandy Sanders WMAs was higher than overlap of bobcat and 

lagomorph activity patterns, suggesting that coyotes may be focusing more on lagomorphs as 
prey than are bobcats. 

 
BACKGROUND: 

Bobcats (Lynx rufus) are one of most-harvested furbearers during the trapping season in 

Oklahoma, and when fur prices are good, can represent a significant source of additional 
income for trappers. In addition, bobcats can be important predators of small mammals, 

assisting in control of rodent and rabbit populations. Despite being a valued resource, the 
secretive nature of bobcats and their widespread distribution across the state make it difficult 
to monitor populations. Between 1977 and 1981, the Oklahoma Department of Wildlife 

Conservation (ODWC) conducted scent station surveys in 59-77 counties in Oklahoma for 2 
nights in August of each year (Rolley 1985). These surveys suggested declining population 

trends for bobcats statewide. Currently, bobcat populations are monitored in 2 ways in 
Oklahoma – with roadside surveys and fur sales. Roadside surveys in 2008-2017 suggested 
declining bobcat numbers in the state (Fig. 1), but roadside surveys may not be ideal for 

monitoring population trends in a secretive species like bobcats. Fur sales, on the other hand, 
may reflect fur prices more than bobcat population status because hunters vary their effort 

based on potential for economic gain.  
 
 

 
 
Figure 1. Number of bobcats recorded during Annual Roadside Survey in Oklahoma, 2018-

2017 (J.Davis, ODWC). 
 

 

A more accurate method of monitoring bobcats on a large spatial scale, independent of fur 
prices, would assist in management of bobcats in Oklahoma. Occupancy modeling is an 

approach that allows relatively rapid collection of presence/absence data of a species over a 
large area (MacKenzie et al. 2002, Long et al. 2011). The method provides information on 
distribution and trends in species occurrence in different parts of the state, while taking into 



account differences in detectability. The latter is particularly important for a species such as 
bobcats, which occur in a wide variety of habitats. Inexpensive, non-invasive methods such 

as hair snares can be used to determine presence/absence of bobcats over a large spatial scale. 
An advantage to using hair snares rather than camera traps is that, if individuals can be 

genetically identified with DNA extracted from hair follicles, the data can be used in genetic 
capture-recapture analyses to estimate population size. While species with variable markings, 
such as bobcats, can be identified visually, pictures from camera traps may not have the 

correct angle or be clear enough for individual identification, especially in low light 
conditions. 

 
In this study, we used hair snare cubbies and occupancy modeling at a large scale to assess 
trends in bobcat populations state-wide. This involved undergraduate volunteers from 

Oklahoma State University and other Oklahoma colleges and universities setting up hair 
snare cubbies in their home counties for 3 weeks over the winter break and morphological 

identification of mammal hairs to species at OSU. On James Collins, Sandy Sanders, and 
Packsaddle WMAs, more intensive studies were conducted to estimate population sizes using 
hair snare cubbies and genetic capture-recapture methods. We also trapped small mammals 

on the three WMAs and measured other potential habitat features as covariates to explain 
differences in bobcat populations across the WMAs. Genetic results and camera trapping 

were used to assess the efficacy of the hair snares as a noninvasive method to assess bobcat 
population trends and population ecology of bobcats across the state and among three 
ecoregions. Management of bobcats will be supported by knowledge generated from this 

study concerning the status and population trends, as well as monitoring methods, in the 
species in Oklahoma. 

 
OBJECTIVES: 
Objective 1: To assess trends in bobcat populations across Oklahoma using non-invasive 

detection methods and occupancy modeling. Presence/absence by location will be provided to 
the ODWC in performance reports. 

 
Objective 2: To estimate bobcat density, using intensive sampling with hair snares and 
genetic mark-recapture methods, in 3 areas of particular interest in different ecoregions of 

Oklahoma. 
 

METHODS: 
Hair Snare Design 
The project built upon the original hair-snare cubby design from West Virginia (Rounsville 

2018), with some minor modifications, including decreased cubby length. Cubbies were 
made from corrugated plastic sheeting, folded and anchored to the ground with four tent 

stakes (Fig. 2). Two pairs of 30-caliber rifle bore brush pairs were fixed at each entrance of 
the cubby, at alternating heights and angled slightly inwards, to snag hair from investigating 
bobcats. Bobcats were lured to cubbies by a combination of scent lure (“Dixie cat” food -

gland mix [Okie Cable and Trap Supply, Crowder, OK]) applied to a carpet square in the 
cubby interior, and curiosity lures (such as feathers, Christmas baubles, and tinsel), which 

were applied to overhanging branches or the cubby exterior. Scent lure was re-applied and 
gun brushes removed, frozen, and replaced, weekly.  
  



 
Figure 2. Hair-snare cubby design exterior (A) and interior (B). Cubbies are constructed from 
corrugated plastic with gun brushes fixed to entrances at alternate heights, carpet squares 

fixed to cubby interior for scent lure application, and tent stakes to anchor the cubby in place 
(see Rounsville 2018). Diagrams courtesy of K. Branham (former OSU and UCO student). 

 
 
Objective 1 Methods 

To maximize the number of Oklahoma counties sampled with hair snares, we recruited >60 
volunteers from learning institutions across Oklahoma, including Oklahoma State University, 

University of Central Oklahoma, Southeastern Oklahoma State University, Southwestern 
Oklahoma State University, Cameron University, Northeastern State University and 
Medicine Park Aquarium & Natural Sciences Center. Volunteers were provided with the 

equipment and trained in how to attract bobcats by an experienced trapper and/or video 
tutorial. Each student volunteer deployed two or more cubbies, with a minimum distance of 

500 m between each cubby, for three weeks over the winter holidays of 2018/19, 2019/20, 
and 2020/21. 
Volunteers were instructed to replace gun brushes and re-apply scent lure weekly, freezing 

gun brushes until they were returned to OSU. Students were also required to provide GPS and 
basic habitat data for each cubby location for use as covariates during analyses. However, 

some volunteers did not provide GPS locations for their cubbies, and not all gun brush sets 
received were correctly labelled by volunteers. Any data received from these cubbies were 
not used in subsequent analyses.  

 
All mammalian hairs were extracted from gun brushes in the lab at OSU. For the 2018/19 and 

2019/20 field seasons, follicles were clipped, if present, and frozen for later genetic analysis. 
Casts and permanent slides were made for all mammalian hairs for morphological 
identification to species. In the 2020/21 field season, all mammalian hairs were stored in 

plastic tubes for genetic analysis, though when hairs formed clumps on brushes, single hairs 
were extracted for morphological identification as a control sub-sample and comparison. All 

genetic hair samples were frozen until DNA extraction and analysis to assess the accuracy of 
morphological identification of hair (see Genetic analyses of hair samples below). 
 

Morphological identification of hairs 
For each mammalian hair extracted from gun brushes, 1) a cast of the scale pattern (Fig. 3A) 

was created by pressing the hair into clear nail polish, and 2) a permanent slide of the hair 
was made to examine the medulla structure (Fig. 3B). Hairs were identified to genus or 
species level based on external scale pattern, medulla, color, and width, facilitated by 

photomicrographs, dichotomous keys and guides, by two to five lab technicians (median = 3).   



 
Figure 3. Unique characteristics of mammalian hair used for identification of hair samples 
obtained from occupancy study volunteers across Oklahoma. A) External scale patterns and 

B) medulla structures of mammal hairs are shown (from MicrolabNW Photomicrograph 
Gallery website). 

 
 
Statistical Analyses 

To determine the probability of occupancy for bobcats across Oklahoma, we employed 
dynamic (multi-season) occupancy models using the unmarked package in R. After 

eliminating hair-snare cubbies unsuitable for analysis (e.g., due to absence of GPS 
coordinates), we used presence/absence data from 166 cubby sites, of which 10 cubby sites 
from 2019/20 were resampled in 2020/21. For presence/absence scores, we used all sources 

of bobcat presence (morphological ID, genetic ID, or both genetic and morphological ID). In 
some cases, in which cubbies had both genetic and morphological IDs for a given week, 

species identifications differed between identification methods. However, this may be due to 
different hairs being used for each identification method, because often several sub-samples 
were extracted from cubbies on a given week, and follicles clipped from very few hairs. 

Therefore, we used any morphological IDs that achieved bobcat identification consensus 
(majority of technician IDs) as bobcat presence per cubby site on a given week.  

 
Volunteers were instructed to place cubbies > 500m apart from another cubby, but despite 
this, almost half of all cubby sites were within this proximity. To avoid losing this data, we 

accounted for this by including a detection covariate which quantified the number of cubbies 
within a 1km radius of the cubby site. To account for further heterogeneity among detection 

probabilities for bobcats, we created three more detection parameters for our occupancy 
models; average weekly temperature, average weekly wind speed, and number of days the 
cubby was active per week. For the former two, we used climate data from a weather station 

in Oklahoma City as a coarse estimate of weather conditions throughout the state. We 
understand that this estimate is coarse, due to local climatic variation. However, because 

cubbies were deployed on different days, these data account for temporal differences in 
deployment dates and factor in extreme weather events (cold snaps and wind storms) that 
may impact bobcat detection, which would affect all cubbies during that period. We also 

included the number of days cubbies were active per week (range = 0 – 16, median = 7) as a 
measure of trapping effort.  

 

A 

B 



For occupancy covariates, we leveraged data from the National Land Cover Database 
(Dewitz, 2021) using a buffer radius of 2 km around cubby sites and calculating the 

proportional area of each landcover class within the buffer. The 2km radius buffer was 
chosen because it mostly closely matched the scale in which Oklahoma was stratified into 

11.73km2 hexes for predictive purposes. The landcover classes chosen as occupancy 
covariates were those we thought most relevant to bobcats, and included the proportion of 
cropland, decidf, dev_high, dev_med, wetland, conif, pasture, herb, mixedf, water, and 

shrub_scrub (see Table 1 for covariate definitions) within a 2km radius of cubby sites. To 
identify the best models for predicting bobcat occupancy, we created an R loop, in which 

every combination of variables was used sequentially, with a maximum of three variables per 
model (to reduce computational time and ensure better model convergence). The best models 
were then ranked according to AIC and model-averaged to determine best predictors of 

bobcat occupancy. We used the model averages to predict bobcat occupancy for a state-wide 
stratification of 15,019 hexes. We kept colonization and extinction constant in our occupancy 

models to increase the probability of model fit, considering our small number of detections. 
Also, considering our small number of resampled cubby sites (n = 10), colonization and 
extinction probabilities are not informative parameters. 

 
 

Table 1. Occupancy and detection variables used in occupancy modelling and GLM analysis 
(For more detailed description of variables see https://www.mrlc.gov/ and 
https://www.ncei.noaa.gov/). 

Variable Type Description 

conif occupancy Proportion of evergreen forest within a 2km radius of cubby 

cropland occupancy Proportion of cropland within a 2km radius of cubby 
decidf occupancy Proportion of deciduous forest within a 2km radius of cubby 

dev_high occupancy Proportion of high development area within a 2km radius of 
cubby 

dev_med occupancy Proportion of medium development area within a 2km radius of 

cubby 
herb occupancy Proportion of herbaceous within a 2km radius of cubby 

mixedf occupancy Proportion of mixed forest within a 2km radius of cubby 
pasture occupancy Proportion of pasture within a 2km radius of cubby 
shrub_scrub occupancy Proportion of shrubland/scrubland within a 2km radius of cubby 

water occupancy Proportion of open water within a 2km radius of cubby 
wetland occupancy Proportion of wetland within a 2km radius of cubby 

active detection Number of days cubby was active on a given week 
cubs1km detection Number of cubbies within a 1km radius of cubby 
AWND detection Average wind speed over duration of study week (NOAA) 

TAVG detection Average temperature over duration of study week (NOAA) 

 
 

In addition, due to poor performance of occupancy models due to small sample size, general 
linear models (GLMs) were constructed for cubby data in R. Mixed models 

(binomial/poisson GLMMs) that used detection parameters (ncubs1km, AWND, TAVG, 
active) as random effects, were initially used, but resulted in low model convergence. It was 
likely these models were too complicated for our small sample sizes. Therefore, GLMs were 

used. A binomial GLM was performed for bobcat presence/absence over all three study 
weeks and a Poisson GLM was used for bobcat counts (sum of bobcat presence/absences 

over three weeks [0 - 3]), with NLCD variables as predictor variables for both models. 



Backwards stepwise selection was used to find the most parsimonious model, according to 
AIC.  

 
Objective 2 Methods 

Intensive studies of bobcat populations were conducted on three WMAs representing three 
different ecoregions in Oklahoma. In addition, western and eastern study sites sit on either 
side of the partition between the two accepted (IUCN) identified subspecies of bobcat in 

North America; Lynx rufus rufus and L. r. fasciatus (Kitchener et al. 2017). James Collins 
WMA occurs in the Arkansas Valley ecoregion and spans 86.41 km² of southeastern 

Oklahoma in Pittsburg and Latimer counties. It is dominated by oak-hickory-pine (Quercus 
spp.-Carya spp.-Pinus spp.) woodlands and major mammalian predators include bobcats, 
coyotes and gray foxes (Urocyon cinereoargenteus). Common prey items include abundant 

Eastern cottontail rabbits, gray (Sciurus carolinensis) and fox squirrels (Sciurus niger), 
bobwhite quail (Colinus virginianus), white-tailed deer (Odocoileus virginianus), and lesser 

abundances of eastern wild turkey (Meleagris gallopavo silvestris) (Oklahoma Department of 
Wildlife Conservation [ODWC], 2019). Sandy Sanders WMA, located in in the Southwestern 
Tablelands ecoregion of southwestern Oklahoma, spans 120.46 km² of Greer, Beckham, and 

Harmon counties. It consists of rugged terrain, dominated by mesquite-juniper (Prosopis 
spp.-Juniperus spp.) and harbors bobcats and coyotes, as well as bobwhite quail, white-tailed 

deer, black-tailed jackrabbits (Lepus californicus), Eastern cottontail rabbits, and desert 
cottontail rabbits (Sylvilagus audubonii) with relatively low frequencies of Rio Grande wild 
turkey (Meleagris gallopavo intermedia) (ODWC 2019). There is considerable cattle-grazing 

in certain areas of the WMA, but human presence is comparatively low. Packsaddle WMA 
occurs in the Central Great Plains ecoregion and spans 79.56 km² of Ellis County in western 

Oklahoma. Bounded by the Canadian River to its south, it is composed primarily of mixed 
grass prairie and shinnery oak (Quercus havardii). It harbors bobcats and coyotes, as well as 
good numbers of bobwhite quail, white-tailed deer, Rio Grande wild turkey, and Eastern 

cottontail rabbits, with occasional black-tailed jackrabbits and desert cottontail rabbits 
(ODWC 2019). Extensive oil drilling occurs across much of Packsaddle WMA, with related 

vehicular traffic considerably high. 
 
Hair snare and camera placement on intensive study areas 

Forty hair-snare cubbies were deployed at each study site (total n = 120) with a minimum 
distance of 500 m between each cubby for a total of six weeks, January-March 2019, 2020 

and 2021 (Fig. 4-6). This period of the year is during the height of bobcat mating season 
(Larivière and Walton 1997), which should increase the effectiveness of lures and result in 
greater movement rates (Chamberlain et al. 2003). Cubby deployment locations prioritized 

areas in which bobcat encounters were thought most likely, including trails used by wildlife 
and/or livestock, dirt roads, and river crossings. The average distance between cubby sites 

was 660 m, though this differed between study sites, with our smallest site James Collins 
averaging 544m in a denser array, and our largest site Sandy Sanders averaging 752 m 
between cubbies.  

 
We included camera traps at a number of our hair-snare cubbies to assess efficacy of hair 

snares (Figs. 4-6). For 2019 and 2020 field seasons, we deployed 60 Stealth Cam G42NG 
motion-sensor camera traps at half of all hair-snare cubby locations (about 20 cameras per 
site). For the 2021 field season, we deployed 53 Stealth Cam G42NG, 21 Reconyx Hyperfire 

HC500, 16 Campark T30, and 2 WildCam camera traps (about 32 cameras per site). The 
average distance between camera sites was 960.78 m; camera density differed among study 

sites and study seasons (due to increased number of cameras deployed; in 2021; Table 2). 



Reconyx and Stealth Cam cameras were set to 5 photo bursts with an interval period of 30 
seconds, whilst Campark cameras were set to 2 photo bursts followed by a 30 second video 

and an interval period of 1 min. All media were time stamped and GPS recorded. 
 

Gun brush collection and replacement, scent lure re-application, and swapping of camera-trap 
SD cards, occurred weekly. All gun brushes remained frozen until hair extraction. 
Mammalian hairs collected from the cubbies were identified morphologically according to 

the methods above. Follicles or whole hairs were frozen for genetic analyses. 
 

 
 
Figure 4. Sandy Sanders Wildlife Management Area, Greer, Beckham, and Harmon counties 
in southwestern Oklahoma. Map shows landcover types reclassified from Diamond and Elliot 

(2015; Appendix I), WMA features, and hair-snare cubby and camera trap locations 2019 – 
2021. Hair-snare cubby locations and camera-trap locations are color-coded and symbol-

coded, respectively, to signify the number of study seasons deployed at a given location. Map 
was created using ArcGIS Pro. 
 



 
 
Figure 5. Packsaddle Wildlife Management Area, Ellis County in western Oklahoma. Map 

shows landcover types reclassified from Diamond and Elliot (2015; Appendix I), WMA 
features, and hair-snare cubby and camera trap locations 2019 – 2021. Hair-snare cubby 
locations and camera-trap locations are color-coded and symbol-coded, respectively, to 

signify the number of study seasons deployed at a given location. Map was created using 
ArcGIS Pro. 

  



 
 
Figure 6. James Collins Wildlife Management Area, Pittsburg and Latimer counties in 

southeastern Oklahoma. Map shows landcover types reclassified from Diamond and Elliot 
(2015; Appendix I), WMA features, and hair-snare cubby and camera trap locations 2019 – 

2021. Hair-snare cubby locations and camera-trap locations are color-coded and symbol-
coded, respectively, to signify the number of study seasons deployed at a given location. Map 
was created using ArcGIS Pro. 

 
 

Table 2. Average distance (m) between camera traps at each study site for each study season. 
JC = James Collins WMA; PS = Packsaddle WMA; SS = Sandy Sanders WMA. 
 

Study Site 2019 2020 2021 

JC 838.51 m 840.63 m 672.52 m 

PS 1155.23 m 1099.18 m 843.84 m 

SS 1184.56 m 1133.35 m 868.48 m 

 

 
Genetic analyses of hair samples 
Due to success rates being low, we used a series of different DNA extraction, DNA 

amplification via the polymerase chain reaction (PCR), and sample purification methods 
throughout the duration of the study in attempt to find an optimal method of species 

identification. In the end, samples were only extracted successfully with two different 
extraction methods: modified Qiagen DNeasy protocol and Promega DNA IQ protocol (3.B. 
Purification From Hair Follicles and Hair Shafts), whilst our organic extraction protocol was 

used for control samples only (hairs from bobcat roadkill), with limited success. For hair 
samples from our GCR study sites for the 2019 field season and for the 2018/19 - 2019/20 

occupancy surveys, hair follicles were removed from hair samples and transferred directly to 



a 1.5ml microcentrifuge tube. For GCR 2020 and 2021 field seasons and 2020/21 occupancy 
survey, whole hairs were collected (or collated from smaller tubes) into 1.5ml 

microcentrifuge tubes. The Qiagen protocol was modified as follows: 180µl of tissue lysis 
buffer ATL and 20µl of proteinase K was added to each sample (30µl of DTT [Dithiothreitol] 

was also added in later DNA extractions) and samples were incubated overnight at 56ºC or 
60ºC. After the initial incubation step, DNA extraction followed the Qiagen DNeasy Blood 
and Tissue Kit protocol with the following modifications to the elution phase: 

decreasing buffer AE from 200µl to 150µl to increase DNA concentration and a double 
elution step (re-inserting elute into microcentrifuge tube and spinning for an additional 1min 

at 8000rpm).  
 
We first determined the species represented by hair samples before genotyping samples 

identified as bobcat. Amplification via PCR followed the protocol suggested by Janečka et al. 
(2006) with the addition of BSA and an increase in cycle time as suggested by Schwartz et al. 

(2004). We tried numerous genetic primer sets for amplification; 16S, FurND1 (Garofalo et 
al. 2018), or MVZ05/400R, which target the 16S rRNA, ND1, and cytochrome b regions of 
the mitochondrial genome, respectively. The thermal profiles used in PCRs are shown in 

Appendix II. PCR products were subsequently electrophoresed on agarose gel and visually 
inspected under UV-light. Samples successfully amplified were cycle sequenced in both 

directions using 16S/FurND1/cyt b forward and reverse primers, following the recommended 
protocol for Big Dye version 3.1 (Applied Biosystems). The thermal profile was: 25 cycles of 
96.0°C for 10 min, 50.0°C for 10 min, 60.0°C for 2 min. Samples were sequenced on an 

ABI3500 Genetic Analyzer. Resulting sequences were aligned when possible and submitted 
to the NCBI database BLAST (www.ncbi.nlm.nih.gov/BLAST/) for species identification.  

 
Bobcat DNA samples were genotyped using a suite of 6 microsatellite loci developed for 
bobcats (Faircloth et al. 2005), domestic cats (Felis catus; Menotti-Raymond and O’Brien 

1995; Menotti-Raymond et al. 1997; 1999; 2005), or Canada lynx (L. canadensis; Carmichael 
et al. 2000). After initial genotyping, we found insufficient variation in locus LC110, and 

subsequently only used loci BCE5T, BC1AT, FCA077, FCA090, and FCA096. Samples 
were genotyped on an ABI3500 Genetic Analyzer and alleles were scored using GeneMapper 
5 software (Applied Biosystems). However, because hair and scat samples contained low 

quantity and low-quality DNA due to a number of factors, including environmental exposure 
and contaminants associated with collection protocols (e.g., presence of other species in scat 

samples), both species identification and individual identification proved difficult. Although 
microsatellite markers are designed to amplify small fragments (which might result during 
DNA degradation due to environmental exposure), they are subject to low copy number 

artefacts (e.g., allelic drop-in, allelic dropout). Additionally, the presence of multiple species 
or multiple individuals within a single collected sample (as might occur when two individuals 

rub against the same brush or prey species DNA is collected with predator species DNA in a 
scat sample). Due to insufficient genetic data to determine individual bobcats, and thus 
estimate densities, we used camera trap data for estimation. 

 
Scat Analyses 

To supplement our genetic identification of bobcats, we collected scat samples 
opportunistically during the field season (Jan- May) on the three study sites, and recorded 
GPS location. Most samples were obtained from dirt roads running throughout the study 

areas, used often by bobcats and coyotes, and where they are known to frequently defecate 
(Macdonald 1980). Due to inaccuracies that often arise when attempting to differentiate scats 

morphologically by species (Davison et al. 2002, Morin et al. 2016), our identifications were 



more conservative, and we only differentiated coyote scat from unidentified meso-carnivores 
(bobcat, coyote) by large (> 30%) proportions of juniper (Juniperus spp.) berries within the 

scat. Coyotes are known to consume juniper berries in the western study areas, and as 
obligate carnivores, bobcats are not likely to consume large quantities of vegetation. By using 

the > 30% juniper presence criterion, we could conservatively rule-out presence of juniper 
due to contamination. Scats containing 0-30% juniper (i.e. not identified in the field), were 
identified genetically to determine depositing species. 

 
We separated each scat sample into two sub-samples, one for diet analysis and one for 

genetic analysis to determine the depositing species. In the 2020 field season we collected 
genetic sub-samples in paper bags and placed in a freezer. Later, scrapings were taken in the 
lab from frozen samples by extracting the outer layer of the scat using a scalpel. In the 2021 

field season, we took scrapings in the field using a scalpel sterilised in bleach solution and 
preserved the material in molecular-grade ethanol (EtOH). We froze the remainder of the 

sub-sample as backup material for genetic analysis. In the lab, we removed any ethanol 
before DNA extraction by air-drying for approximately 20 min. We extracted DNA using the 
QIAamp DNA Stool Mini Kit (Qiagen, Inc.) modified to include a heated suspension step 

after the addition of InhibitEX buffer for 5 min at 70ºC, extended incubation after the 
addition of proteinase K and buffer AL from 10 min at 70ºC to 1 hr at 70ºC, and a double 

elution step (performed the same as for hair samples). Amplification via the polymerase chain 
reaction (PCR) used 16S, FurND1 (Garofalo et al. 2018), or MVZ05/400R genetic primers, 
which target the 16S, ND1, and cytochrome b rRNA regions of the mitochondrial genome, 

respectively. The thermal profiles used in PCRs are shown in Appendix II. PCR products 
were subsequently electrophoresed on agarose gel and visually inspected under UV-light. 

Samples successfully amplified were cycle sequenced in both directions using 16S or 
FurND1 forward and reverse primers, following the Big Dye version 3.1 (Applied 
Biosystems) recommended protocol. The thermal profile was 96.0°C for 10 min, 50.0°C for 

10 min, 60.0°C for 2 h. After linear amplification, corresponding samples were aligned when 
possible and implemented into the NCBI database BLAST (www.ncbi.nlm.nih.gov/BLAST/) 

for species identification. 
 
The diet sub-sample was collected in a labelled paper bag in the field and stored at room 

temperature for later diet analysis. After initial air-drying, scat sub-samples were placed into 
doubled and knotted nylon stockings and placed in hot soapy water for >1 hr to soften and 

rinsed to remove matrix material. This process was repeated as needed. Scats were dried 
under a fume hood for >12 hr and oven-dried at 50°C for >48 h and stored for potential future 
analysis of mesocarnivore diets.   

 
Density estimates and meso-carnivore/prey activity patterns from camera trap data 

We estimated bobcat density on Sandy Sanders, Packsaddle, and James Collins WMAs by 
first identifying individual bobcats in camera-trap images by their unique pelage patterns. 
Observations in which pelage patterns were not visible (e.g. infrared flare, subject obscured 

by foliage) were not counted. We estimated bobcat density at each study area by first 
calculating the ½ mean maximum distance moved (½MMDM) by individual bobcats 

captured by multiple cameras, pooling data over the three field seasons. By pooling data, we 
assume no home range shifts occurred during the 3-year period.  However, due to low 
number of recaptures within single field seasons, we believe pooling data resulted in more 

accurate estimates. We obtained MMDM calculations via the MMDM function in R package 
secr (Efford 2022) and halved the values. We then created a geodesic buffer of this radius 

length around camera site locations in ArcGIS, dissolving buffers into a single feature, and 



calculated the resultant area in square kilometers. Density was estimated as the number of 
bobcat individuals divided by the estimated sampling area. 

 
The activity patterns of bobcats and their sympatric meso-carnivores: coyotes, opossums, 

raccoons, and striped skunks, and their potential prey species: rabbits (Sylivagus spp.), were 
compared using the compareCkern function using the activity package (Rowcliffe 2021) in R 
(R Core Team 2017). This function uses fitted kernel densities of radian time-of-day data to 

calculate the overlap index Δ̂4 for the fitted distributions, which ranges from 0 (no overlap) to 

1 (complete overlap), then completes a randomisation test for the probability that the two sets 
of circular observations come from the same distribution (Rowcliffe 2021). We compared 
activity patterns of bobcats among study areas, coyotes among study areas, and among 

bobcats, coyotes and rabbits across all areas, with data pooled from all three study seasons. 

Number of bootstrap iterations was 999. We then compared coefficients of overlap Δ̂4 for all 

species pairs (meso-carnivores and rabbits) among study areas, with data also pooled over all 
three field seasons. Samples sizes of < 20 at a given site for a given species were omitted 

from comparisons.  
  

Small mammal live-trapping 
Due to the effect small mammal communities can have in influencing bobcat abundance, 
space-use, and population dynamics (Bailey 1974, Knick 1990, Hansen 2012), estimating the 

small mammal and lagomorph densities at each intensive study site can improve our 
understanding of the bobcat-prey dynamics exhibited in ecologically distinct regions of 

Oklahoma. Small mammal (primarily rodent) abundance data was collected via live trapping 
between March – May 2020 and 2021. A total of 120 large (7.62 cm x 9.53 cm x 30.48 cm) 
and 240 small (5.08 cm x 6.35cm x 16.51 cm) Sherman live-traps were deployed on each of 

the three intensive study areas. Landcover within the study areas was reclassified from 
landcover maps by Diamond and Elliott (2015), into three or four distinct landcover types 

(Fig. 7-9; Appendix I). Four 300m linear transects were deployed on each landcover type per 
study area, with each transect composed of 30 trapping stations. Due to damage sustained to 
traps leading to trap shortages, we reduced trapping stations to 28 (280m transects) at Sandy 

Sanders during the 2020 season only. Transects were used instead of trapping grids because 
they are more effective at assessing small mammal abundances, especially when abundances 

are low (Pearson and Ruggiero 2003). Although transects were mostly linear, environmental 
obstacles and fine-scale deviations in landcover resulted in non-linear transects. This was 
especially true for riparian transects, which followed the course of streams or rivers. Trapping 

stations, placed at 10m intervals along each transect, were composed of two small traps and 
one large trap placed within a 1.5 m radius. Traps were baited with rolled oats and peanut 

butter and active for three consecutive nights. Rodents and shrews were identified  to genus or 
species level and sexed in the field. Individuals were marked to avoid pseudo-replication 
during recaptures, using a permanent (non-toxic) marker on the base of the skull and inside 

the ears, which we found to be the most difficult areas for rodents to remove during the 
relevant time period. In 2021, markers were colour-coded to provide coarse capture histories. 

In addition, we obtained weights of individual rodents during the 2020 field season. 
 
Small Mammal Statistical Analyses. Because the aim of this project was to quantify and 

reliably predict rodent abundances at the different landcover types represented within our 
study sites, generalised linear mixed models (GLMM) were constructed using the lme4 

package v1.29 (Bates et al. 2015) in RStudio v4.2.2 (RStudio Team, 2020), with the number 
of unique rodent individuals captured at each trapping station as the response variable and 
landcover type kept as a fixed effect. As stations were nested within transects, transect ID 



was included as a random effect. Separate analyses were performed for each study area due to 
the unique environments and rodent species present at each site. To control for heterogeneity 

among capture probabilities as a result of weather conditions preceding each day of capture, 
we included total precipitation, average maximum temperature, and average minimum 

temperature for the day prior to each of the three capture days as a random effect. Because 
the response variable was count data in nature, a Poisson link was specified. Overdispersion 
analyses were performed for all models. If a set of models was overdispersed, a negative 

binomial link was specified. Candidate models included transect ID plus all combinations of 
the environmental variables, including no variable, as random effects (e.g. n_indiv ~ 

landcover + (1 | transect) + (1 | AVGTMIN)), and were weighted by AIC. Models with ΔAIC 
<2 were considered as showing equal support, and in all cases models ΔAIC >2 were shown 
to have singular fits. Therefore, the best model was selected from this shortlist of models 

(ΔAIC <2) based upon biological relevance, and was used to predict the expected number of 
individual rodents captured on a given transect within each landcover type, using the predict() 

function. To assess differences in ecological metrics among landcover types at each site, we 
compared species richness and Shannon diversity using the vegan package v2.7 (Oksanen et 
al. 2020). We used linear models to determine significant differences in metric values 

between landcover types of each study area. To contextualize bobcat densities, between-site 
analysis was performed for all study areas, using the same methodology as above to compare 

abundances and ecological metrics. 
 
  



 
 
Figure 7. Sandy Sanders Wildlife Management Area, Greer, Beckham, and Harmon counties 

in southwestern Oklahoma. Map shows landcover types reclassified from Diamond and Elliot 
(2015; Appendix I), WMA features, and small mammal transect locations 2020 – 2021. 

Transects are labelled and color-coded to signify the number of study seasons deployed at a 
given location. Map was created using ArcGIS Pro.  



 
 
Figure 8. Packsaddle Wildlife Management Area, Ellis County in western Oklahoma. Map 

shows landcover types reclassified from Diamond and Elliot (2015; Appendix I), WMA 
features, and small mammal transect locations 2020 – 2021. Transects are labelled and color-
coded to signify the number of study seasons deployed at a given location. Map was created 

using ArcGIS Pro.  



 
 
Figure 9. James Collins Wildlife Management Area, Pittsburg and Latimer counties in 

southeastern Oklahoma. Map shows landcover types reclassified from Diamond and Elliot 
(2015; Appendix I), WMA features, and small mammal transect locations 2020 – 2021. 

Transects are labelled and color-coded to signify the number of study seasons deployed at a 
given location. Map was created using ArcGIS Pro. 
 

 
RESULTS 

Accuracy of morphological identification of hairs to species 
We considered a ‘sample’ as hair obtained from all brushes from a cubby on a given week, 
which may consist of many sub-samples. In the state-wide occupancy study we obtained 201 

hair samples from cubbies and morphologically identified 56 hair samples to species in 
2018/19, 52 in 2019/20, and 28 in 2020/21. Of these, at least one hair was identified as 

bobcat in 72 (53%) samples by at least 50% of technicians, which we considered 
identification consensus. Of the 263 hair samples collected on the WMA study areas, we 
identified 43 to species in 2019 and 18 in 2021, of which 3 and 6 were identified as bobcat by 

consensus, respectively.  
 

To evaluate the accuracy of morphological identification of hair, we compared 77 sub-
samples for which we had both morphological and genetic identification. We considered 
genetic identification to species to be accurate.  Due to our protocol shifts (from clipping 

follicles to collecting whole hairs) and the presence of multiple sub-samples, we present our 
accuracy ratings as a range of values, representing the highest and lowest possible accuracy 

and highest and lowest possible number of false positives. Accuracy, defined as the number 
of correct identifications made per hair-lab technician assigned to a sub-sample, was 
calculated as between 20.20% and 25.93%. However, we had a significant number of hair 



sub-samples identified as domestic cattle (Bos taurus, n = 26), which were likely not included 
in our dichotomous keys and hair guides intended for wild animals. We did, however, 

classify morphological identifications of bison (Bison bison) as correctly identifying cow 
hair. When removing cow hair sub-samples from the comparisons, accuracy increased to 

between 29.85% and 35.82%. Species-specific accuracy, calculated as the percentage of 
morphological IDs that matched genetic IDs, was highest for bobcat hairs (54.81 - 56.73%) 
and opossum hairs (36.17 - 51.06%), and lowest for coyote hairs (0%). There were between 

32 and 58 false positives for bobcats, indicating an identification bias for bobcats, as well as 
21 false negatives. However, identification consensuses (species ID made by the majority of 

technicians) may be a more useful statistic to measure accuracy.  
 
Across our 77 sub-samples, 58 reached morphological identification consensus (Table 3). 

Nineteen (32.76%) of these morphological identifications matched with our genetic 
identifications. Again, when removing hairs genetically identified as domestic cattle, 

accuracy increased (to 45.24%), but remained below 50% accuracy. Among our 58 
comparative sub-samples with consensus, 16 identified the hair as bobcat, however only 50% 
matched the genetic identification, most commonly raccoon or domestic dog. On the other 

hand, most sub-samples genetically identified as bobcat matched morphological 
identifications (66.66%), and mismatches were misattributed morphologically to a range of 

species. This suggests that hair-lab technicians had an identification bias for bobcats. 
Mismatches between morphological and genetic identification may be explained by 
mislabelling, contamination, or other source of human error, by morphological and genetic 

identifications being based on hairs from different species if hair from multiple species was 
collected on a hair snare, or the difficulty of technicians to identify hairs to species 

accurately. 
 
 

Table3. Morphological identification consensuses reached by technicians for 58 comparative 
sub-samples and the number and percentage that matched the corresponding genetic 

identification.  
 

Identification consensus n match % correct 

Lynx rufus 16 8 50 

Didelphis virginiana 9 6 67 

Canis latrans 8 0 0 

Odocoileus virginianus 4 1 25 

Mouse or shrew 4 0 0 

Mephitidae 3 0 0 

Homo sapiens 3 0 0 

Ondatra zibethicus 3 0 0 

Procyon lotor 2 2 100 

Neogale vison 2 0 0 

Ovis spp. 1 1 100 

Canis lupus familiaris 1 1 100 

Syvilagus spp. 1 0 0 

 
 

  



Objective 1 
In the state-wide occupancy study, we obtained 201 mammalian hair samples over about 586 

hair-snare trapping weeks for an overall snag rate of 0.34 samples/week. Bobcat detections at 
each cubby varied between 0 and 3 for the 3 weeks each cubby was deployed. We identified 

hairs morphologically for 2018/19 and 2019/20, and clipped 38 and 39 follicle samples, 
respectively. We were able to identify 18 (47.37%) and 6 (15.38%) follicle samples, 
respectively, to species (Table 4). In the 2020/21 field season, we only collected samples for 

genetic identification, collecting a total of 88 samples and genetically identifying 26 
(29.55%) to species. For all 50 hair samples identified genetically (Fig.10), bobcats were the 

most numerous species (25%), followed closely by opossums (23%), domestic cattle (22%), 
raccoons (12%), and domestic dogs (8%). Domestic animals represented 38% of all 
bycatches. 

 
 

Table 4. Number of genetic samples (total = 165) identified for each field season 

Species Identified 2018/19 2019/20 2020/21 Total 

No 20 33 62 115 

Yes 18 6 26 50 

% Identified 47.37 15.38 29.55 30.30 

 
 

 
Figure 10. Percentage of species identifications of 50 genetic samples obtained from hair-
snare cubbies in the state-wide occupancy study, 2018/19 – 2020/21.  

 
 
Occupancy models selected with ΔAIC ≤ 2 included the covariates conif, decidf, herb, 

mixedf, pasture, and shrub_scrub, suggesting these land cover classes were important 
determinants of bobcat occupancy. Model averaged coefficient values indicated that average 

weekly temperature (TAVG) significantly increased detection probability, though the effect 



size (coefficient) was small (Table 5). Model-averaged coefficient estimates suggested conif, 
decidf, mixedf and shrub_scrub all decreased the probability of bobcat occupancy, whilst 

herb and pasture increased occupancy probability. However, all estimates had considerable 
standard error. In the state-wide occupancy map (Fig. 11), bobcat occupancy appears lowest 

in the Ouachita Mountains region in the southeast, and in the western portion of the state. 
However, the standard errors for these estimates are also highest in these areas (Fig.12). 
These low estimates and high standard errors are likely due to low sample sizes, which, in 

land cover types with particularly few deployments, resulted in the highest inaccuracy in 
occupancy predictions.  

 
 
Table 5. Model-averaged coefficient values from # occupancy models with ΔAIC ≤ 2. 

Variable definitions in Table 1. col(Int) = intercept for colonization; ext(Int) = intercept for 
extinction. * denotes significance at p <0.05. 

Coefficient Estimate Std. Error z value Pr(>|z|) 

p(Int) -1.43728 2.1435 0.671 0.5025 

p(active) -0.1937 0.16671 1.162 0.2453 

p(AWND) -0.1581 0.11159 1.417 0.1565 

p(cubs1km) -0.28902 0.1881 1.537 0.1244 

p(TAVG) 0.08467 0.04146 2.042 0.0411 * 

col(Int) -34.43711 400.62683 0.086 0.9315 

ext(Int) -1.11824 0.5627 1.987 0.0469 * 

psi(Int) 1.8857 1.98342 0.951 0.3417 

psi(conif) -15.65078 26.199 0.597 0.5503 

psi(decidf) -2.80536 6.31147 0.444 0.6567 

psi(herb) 0.36433 1.50537 0.242 0.8088 

psi(mixedf) -114.27543 113.0184 1.011 0.312 

psi(pasture) 100.25757 91.27749 1.098 0.272 

psi(shrub_scrub) -2.13071 6.90701 0.308 0.7577 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  



 
Figure 11. Predicted probability of bobcat occupancy for 11.73-km2 hexes of Oklahoma 

based on model-averages of best occupancy models (ΔAIC ≤ 2). Also shown is the number of 
bobcat detections over the three weeks that each hair-snare cubby was deployed in the state-
wide occupancy study, 2018/19 – 2020/21. 

 

 
Figure 12. Standard error of bobcat occupancy predictions for 11.73-km2 hexes of Oklahoma, 

based on model-averages of best occupancy models (ΔAIC ≤ 2). 
  



Stepwise selection resulted in the best binomial GLM model as the one that included conif, 
dev_med and dev_high. Medium human development (dev_med) was significant at the α=0.1 

level and indicated increasing bobcat presence with increased are of medium development, 
whilst conif and dev_high predicted large, but non-significant decreases in bobcat presence 

(Table 6). For the poisson model, stepwise selection also selected conif, dev_med, and 
dev_high in the best model, but also shrub_scrub (Table 7). dev_med significantly increased 
bobcat presence/absence counts, but dev_high significantly decreased it. These models have 

considerable error and fit the data quite poorly, likely due to insufficient detections of 
bobcats. Therefore, these results should be taken with caution, but may be useful to show 

potential relationships between land cover types and bobcat presence/absence that occupancy 
models may be missing, particularly the relationship between bobcat occupancy and medium 
and high development areas. Bobcats are likely to benefit from medium development (such as 

suburban areas) due to increases in prey abundances, but will likely find high development 
areas inhospitable. 

 
 
Table 6. Best binomial GLM model for bobcat presence/absence at cubby sites, resulting 

from stepwise selection. 

Coefficient Estimate Std. Error z value Pr(>|z|) 

(Intercept) -0.7511 0.2083 -3.606 0.00031 
*** 

conif -13.022 8.51 -1.53 0.125964 

dev_high -83.6414 52.5298 -1.592 0.111325 

dev_med 28.9522 17.2718 1.676 0.093684 . 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 

Table 7.  Best Poisson GLM model for counts of bobcat counts at cubby sites, resulting from 
stepwise selection. 

Coefficient Estimate Std. Error z value Pr(>|z|) 

(Intercept) -0.7519 0.1601 -4.697 2.64E-06 *** 

conif -8.3624 6.5619 -1.274 0.2025 
shrub_scrub -5.0137 3.2089 -1.562 0.1182 
dev_high -61.0123 32.9657 -1.851 0.0642 . 

dev_med 19.5118 9.4216 2.071 0.0384 * 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 

Objective 2 
Results from hair-snare and scat data from three WMAs 
Cubby width (entrance width) was adjusted throughout the three field seasons, beginning 

with an approximate width of 75 cm in 2019. Based on low return of hair samples, even when 
bobcats were observed entering cubbies on camera trap photographs, we decreased the width 

to approximately 35 cm in the 2020 season, in hopes to increase snag rates from snares. 
However, after reviewing camera photographs of the 2020 season, this new width appeared to 
dissuade some individuals from entering the cubby, so we increased the cubby width to 

approximately 60 cm in our final field season. Our success rate of obtaining mammalian hair 
samples increased every field season (Table 8), however it is unclear what difference the 

cubby width made to our success rate of obtaining specifically bobcat hair.  
 



For simplification, we counted a ‘sample’ as hair obtained from all brushes of a cubby on a 
given week, which may consist of many sub-samples. From hair-snare cubbies on WMAs, we 

obtained 263 mammalian hair samples over 2073 trapping weeks for an overall snag rate of 
0.13, with no obvious pattern in snag rate across sampling weeks (Fig13). The majority of 

identifications for the 2019 field season were morphologically derived, but of the 26 follicles 
clipped from hairs we identified 9 (34.62%) to species. For the 2020-2021 field seasons, 
whole hairs were extracted for genetic identification. In 2021, sub-samples of hairs were also 

identified morphologically. Of the 91 hair samples collected in 2020, and 148 collected in 
2021, we genetically identified to species 27 (29.67%) and 13 (8.78%), respectively.  

 
 
Table 8. Hair-snare snag rate for cubbies on Sandy Sanders, Packsaddle, and James Collins 

WMAs measured as the percentage of hair-snare cubbies returning with at least one 
mammalian hair sample for each week during our three field seasons. 

year week 1 week 2 week 3 week 4 week 5 week 6 

2019 10.38 4.17 3.33 18.33 4.17 2.50 

2020 10.09 7.56 16.81 14.17 7.50 13.33 

2021 33.33 20.00 22.50 11.67 22.50 24.00 

 
 

 
Fig.13: Hair-snare snag rate for cubbies on Sandy Sanders, Packsaddle, and James Collins 
WMAs measured as the percentage of hair-snare cubbies with at least one mammalian hair 

sample for each week during our three field seasons. 
 
 

From hair-snare cubbies on WMAs, of the 39 genetic samples we were able to identify to 
species using mtDNA, 28% were identified as bobcat (Fig.14). Opossums (Didelphis 

virginiana) were the most numerous species (33%), with other common bycatch species 
including domestic dog (Canis lupus familiaris 10%), domestic cattle (Bos taurus 10%), and 
white-tailed deer (Odocoileus virginianus 5%). Domestic species represented 29% of all 

bycatches. After genotyping, we were able to identify a further 10 samples as likely bobcat. 
Therefore, for years in which we took primarily genetic samples (2020 and 2021), trapping 

rate for bobcats was 1.24/100 trapping weeks. 
 
 



 
Figure 14. Percentage of species identifications of 39 genetic samples obtained from hair-
snare cubbies on Sandy Sanders, Packsaddle, and James Collins WMAs, 2019-2021.  
 

 
We collected 243 predator scats across all three study sites over the 2020 and 2021 hair-snare 

and small-mammal-trapping field seasons. Fifty-nine of the scats were identified to species, 
34 via morphology (presence of juniper, SS only) and 25 via genetic analysis (Table 9). Fifty-
two scat samples were from coyotes, 6 were from bobcats, and 1 was from grey fox. 

 
 

Table 9. Identification of predator scats collected at James Collins WMA, Packsaddle WMA, 
and Sandy Sanders WMA, 2020 and 2021. (N = 243 scats) 
 

study site un-
identified 

identified ID via 
DNA 

ID via 
morph. 

coyote bobcat grey fox 

JC 72 18 18 
 

13 4 1 

PS 40 5 5 
 

5 
  

SS 72 36 6 30 34 2 
 

 
 

Camera-trap results  
Total camera-trapping nights over all study areas and study seasons was 8425 trapnights. 
Two cameras malfunctioned during the 2019 field season, five cameras in 2020 and four 

cameras in 2021. All data from these cameras were removed from analyses. We obtained 134 
observations of bobcats over all three field seasons, resulting in a trapping rate of 1.59 

bobcats/100 trapnights. The highest frequency of bobcat observations occurred at Packsaddle 
and lowest frequency at Sandy Sanders, though this differed between years (Fig. 15). Of all 
109 unique camera-trap locations across all study sites and field seasons, 55.96% had at least 

one bobcat observation (James Collins = 61.11%, Packsaddle = 57.89%, Sandy Sanders = 
55.96%), though this varied by study area and year (Fig. 16).  There appeared to be no pattern 



in observation frequency among study weeks (Fig 17). We also collected significant data on 
sympatric species (n = 1710, excluding white-tailed deer), including those relevant to 

bobcats, including 284 rabbit and 258 coyote observations (see Appendix IV).  
 

 

 
Figure 15. Camera-trapping rate for bobcats per 100 trapnights (total trapnights = 8425) for 

each study site and field season. JC = James Collins WMA; PS = Packsaddle WMA; SS = 
Sandy Sanders WMA. 
 

 

 
Figure 16. Proportion of camera-trap stations with at least one bobcat (Lynx rufus) 

observation for each study area and all sites combined, per study season. JC = James Collins 
WMA; PS = Packsaddle WMA; SS = Sandy Sanders WMA. 
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Figure 17. Number of bobcat observations by camera trap per week. All camera data pooled 
across all field seasons 2019-2021. 

 
 

Bobcat density estimation on WMAs based on camera trap data. At James Collins WMA, we 
identified 12 distinct individual bobcats. The MMDM was calculated as 2038.34 m, resulting 
in a sampling area of 36 km2 (Table 10). This resulted in a bobcat density estimate of 0.33 

bobcats/km2. For Sandy Sanders WMA, we identified 2 individuals and the MMDM 
calculated as 4883.97 m. Therefore, the sampling area was estimated at 115 km2 and the 

bobcat density at 0.02 bobcats/km2. At Packsaddle WMA we identified 14 individuals and 
MMDM calculated as 3143.40 m. The sampling area totalled 98 km2, resulting in a bobcat 
density of 0.14 bobcats/km2. However, at this study site there were several observations of 

just one flank of the animal, making it difficult to assign those images to a specific individual. 
Therefore, the estimated density at Packsaddle should be considered a rough estimate. To 

visualize potential minimum home ranges (HR) of bobcats, minimum convex polygons 
(MCPs) were constructed for each bobcat individual photographed at ≥3 different camera-
trap locations (Fig.18-20). 

 
 

Table 10. Bobcat density estimates for Wildlife Management Areas. 

Study Site Number of 
Bobcat 

Observations 

Number of 
Individuals 
Identified 

MMDM 
(km) 

Sampling 
Area (km2) 

Bobcat 
Density 
(/km2) 

James Collins 46 12 2.04 36 0.33 

Packsaddle  52 14* 3.14 98 0.14 
Sandy Sanders 36 2 4.56 115 0.02 

*Several images showed just one flank, so assignment to a known individual was less certain. 
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Figure18. Minimum convex polygons (MCPs) for bobcats captured ≥3 different camera-trap locations at 

James Collins WMA. MCPs are drawn around camera locations in which an individual was 
photographed. All other capture locations are denoted with a bobcat silhouette, whilst camera stations 

with no bobcat observations are denoted with an X. 
 



 
Figure19. Minimum convex polygons (MCPs) for bobcats captured ≥3 different camera-trap locations at 
Packsaddle WMA. MCPs are drawn around camera locations in which an individual was photographed. 

All other capture locations are denoted with a bobcat silhouette, whilst camera stations with no bobcat 
observations are denoted with an X. 

 



 
Figure 20. Minimum convex polygons (MCPs) for bobcats captured ≥3 different camera-trap locations 
at Sandy Sanders WMA. MCPs are drawn around camera locations in which an individual was 

photographed. All other capture locations are denoted with a bobcat silhouette, whilst camera stations 
with no bobcat observations are denoted with an X. 

 
 
Activity Patterns 

All meso-carnivores, as well as rabbits, were mostly nocturnal (> 60% observations). However, bobcats 
and coyotes had much more daytime observations than the other species, accounting for >16% of activity 

in both species (Table 11). These two species also had the most crepuscular activity, at 21% for bobcats 
and 15% for coyotes, with rabbits exhibiting 14% and raccoons 11%. Bobcats and coyotes overlapped 
significantly in activity patterns overall (Δ 0.88), whilst both species exhibited significantly different 

activities to rabbits (p < 0.001; Table 12), with bobcats overlapping the least with their assumed prey (Δ 
0.72) compared to coyotes (Δ 0.82).  

 
However, there were considerable differences in activity patterns between study sites. Both bobcats and 
coyotes showed variation in activity primarily on a west-east axis. Coyotes showed significant statistical 

differences in activity patterns between JC and PS (Δ 0.78, p = 0.036; Table 14), seeing a 21% reduction 
in nocturnal observations at JC compared to PS (52.83% and 74.17%, respectively), and 19% increase in 

daytime observations at JC compared to PS (30.19% and 10.83%, respectively). This was similar with 
bobcats, who showed a 15% reduction in nocturnal observations at JC compared to PS (54.35% and 
69.44%, respectively), and 15% increase in daytime observations at JC compared to SS (26.09% and 

11.11%, respectively), with statistically significant differences between JC and SS (Δ 0.72, p = 0.047; 
Table 13). 



Of species pairs with samples sizes >20 at each study site, the greatest study-site differences in activity 
overlap were between coyotes and rabbits, from Δ 0.88 at PS to Δ 0.61 at JC, a difference of Δ 0.27 (Table 

15). The second greatest study-site differences in activity overlap were between bobcats and coyotes, from 
Δ 0.92 at JC to Δ 0.78 at SS, though overlap remained high. Bobcats also showed large overlap coefficient 

shifts with rabbits, from Δ0.77 at PS to Δ0.64 at JC. These results show that activity pattern overlap is 
high among bobcats and coyotes, but highest at JC, where both species have increased daytime activity 
and asynchrony with their supposed prey. Both species overlapped to the most extent with rabbits at PS, 

though coyote-rabbit overlap was stronger than bobcat-rabbit, with coyote-rabbit being the highest overlap 
among species pairs at PS. 

 
 
Table 11. Number of observations at each diel activity period, based on NOAA solar calculations. 

Species Study site Day Twilight Night 

Bobcat 

JC 12 9 25 

PS 8 12 32 

SS 4 7 25 

Coyote 

JC 16 9 28 

PS 13 18 89 

SS 13 12 60 

Rabbit 

JC 1 11 76 

PS 2 6 71 

SS 4 24 89 

 

 
Table 12. Overlap and statistical differences in activity periods between bobcats (Lynx rufus), coyotes 

(Canis latrans), and rabbits (Sylvilagus spp.), from data collected across all study sites 2019-2021, using 
coefficient of overlap (Δ) from 999 replications. Statistically significant (α = 0.05) differences in activity 
from null are highlighted in grey.  

Species Pair Observed 

Overlap 

Null 
Overlap 

Standard 

Error 

P-value 

bobcats and coyotes 0.8797 0.8934 0.0260 0.2803 
bobcats and rabbits 0.7234 0.9017 0.0253 0.0000 

rabbits and coyotes 0.8152 0.9316 0.0210 0.0000 

 
 

Table 13. Study site differences in bobcat (Lynx rufus) activity periods from data pooled from all field 
seasons, using coefficient of overlap (Δ) from 999 replications. Statistically significant differences in 
activity are highlighted in grey.  

 Observed 

Overlap 

Mean Overlap Standard Error P-value 

JC vs PS 0.8374 0.8425 0.0500 0.4164 
JC vs SS 0.7207 0.8284 0.0556 0.0413 

PS vs SS 0.8094 0.8101 0.0538 0.4537 
East vs West 0.7954 0.8612 0.0452 0.0815 

 



Table 14. Study site differences in coyote (Canis latrans) activity periods from data pooled from all 
field seasons, using coefficient of overlap (Δ) from 999 replications. Statistically significant differences 

in activity are highlighted in grey.  

 Observed 

Overlap 

Mean Overlap Standard Error P-value 

JC vs PS 0.7818 0.8770 0.0388 0.0180 

JC vs SS 0.8043 0.8675 0.0429 0.0806 
PS vs SS 0.8413 0.8800 0.0336 0.1241 

East vs West 0.8007 0.8836 0.0380 0.0270 

 
 

Table 15. Coefficient of overlap (Δ̂4) for species pairs (data pooled 2019-2021) at each study site. 

Species with < 20 observations at a study site were excluded from comparisons (opossums at SS). 

species pair JC PS SS   

bobcat-coyote 0.920 0.836 0.779   

bobcat-rabbit 0.642 0.771 0.707   

bobcat-skunk 0.636 0.679 0.725   

bobcat-raccoon 0.692 0.740 0.717   

bobcat-opossum 0.559 0.666    

coyote-rabbit 0.608 0.879 0.819   

coyote-skunk 0.614 0.733 0.738   

coyote-raccoon 0.648 0.781 0.768  Key 

coyote-opossum 0.544 0.625   >0.90 

rabbit-skunk 0.847 0.783 0.805  >0.85 

rabbit-raccoon 0.760 0.836 0.850  >0.80 

rabbit-opossum 0.631 0.647   >0.75 

skunk-raccoon 
0.812 0.782 0.887 

 0.55-
0.75 

skunk-opossum 0.675 0.740   <0.55 

raccoon-opossum 0.784 0.784   <0.50 

 
 

Results of Small Mammal Trapping 
Over 21,087 trapping nights, we achieved 1212 captures of 832 unique individuals, with a trap success 
rate of 5.75%. Mortality rate was 5.08% of all captured individuals (5.53% of all capture events). The 

majority (>70%) of captures were of deer mice (Peromyscus spp.), which were found in abundance at all 
three study sites and were found in every landcover type (Tables 16 & Appendix V). Reithrodontomys 

spp. were also observed in large frequencies and were found at most habitat types (≥1 capture at 80% of 
landcover types), but were most abundant in grassland/prairie landcover (see Appendix V). 
  



Table 16. Number of captures of novel individuals (does not include recaptures) of each small mammal 
classification over two field seasons, 2020 and 2021. 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
Small mammal abundances and community composition. For James Collins WMA, three models were 
selected as showing equal support; one which included only transect ID as a random effect, one which 

also included average maximum temperature, and on which also included average minimum 
temperature. As we wanted to control for heterogeneity in capture probabilities created by incidental 

weather conditions, the selected best model included average maximum temperature as the random 
effect, as this also had higher variance than average minimum temperature. Subsequent rodent 
abundance prediction were based on this model. The model showed significantly more rodent  

individuals in grassland habitats compared all other habitats (all p < 0.03; Table 17) and predicted 13 
individuals captured on a given grassland transect, whilst the other three habitat predictions ranged from 

3 to 6 individuals (Table 18). For Packsaddle, two models were selected as showing equal support; one 
which included only transect ID as a random effect, and one which also included average minimum 
temperature. For the same reason as mentioned above, I the latter model was selected as the best model, 

which showed significantly fewer rodents within riparian habitat compared to shinnery shrubland and 
sandy prairie (Table 17). Model predictions showed 13 and 12 individuals for transects of the latter 

habitat types, respectively, whilst only 4 individuals for riparian (Table 18).  
 
For Sandy Sanders WMA, four models selected as showing equal support; one which included only 

transect ID as a random effect, one which also included total precipitation, one which also included 
average maximum temperature, and one which also included average minimum temperature. We 

selected the one which included the average maximum temperature, as it was judged to be the most 
biologically meaningful. In all cases, across all sites, selection of any one of the shortlisted models 
resulted in only the most minor effects to coefficient, error and probability values, so we feel making 

judgement calls on the best model did not affect the outcome of the analysis. Shinnery shrubland 
exhibited significantly higher numbers of rodent individuals (Table 17), with a predicted 18 individuals 

per transect, compared to 7 for each of the other two habitat types (Table 18). No issues were found for 
any of the models during diagnostic testing. 

Classification Genus/Species 2020 2021 Total 

deer mouse Peromyscus spp. 313 256 569 

harvest mouse Reithrodontomys spp. 81 51 132 

grasshopper mouse Onychomys leucogaster 16 20 36 

hispid cotton rat Sigmodon hispidus 31 3 34 

small pocket mouse Perognathus spp. 1 16 17 

wood rat Neotoma spp. 6 6 12 

ground squirrel Ictidomys spp. / Xerospermophilus 
spp. 

6 4 10 

kangaroo rat Dipodomys ordii 7 2 9 

hispid pocket mouse Chaetopidus hispidus 2 5 7 

shrew Blarina spp. / Cryptotis parva 4 0 4 

marsh rice rat Oryzomys palustris 0 1 1 

meadow jumping 
mouse 

Zapus hudsonius 1 0 1 



Lastly, comparisons across all study sites saw three models showing equal support, all with transect as a 
fix effect, one with average minimum temperature and one with average maximum temperature. No 

significant differences were found among study sites (Table 19), and predicted abundances range from 
0.23 at JC to 0.34 at SS. 

 
 
Table 17. Best models fixed effects outputs for each of the study site analyses. Model intercepts are 

italicized.  

Model Coefficient (Habitat 
Type) 

Estimate Std. Error z value Pr(>|z|) 

J3 Grassland -0.7946 0.2754 -2.886 0.00391** 

(JC site) Dry Oak Woodland -1.4358 0.631 -2.275 0.02289*  
Oak-Pine Forest -1.1974 0.4117 -2.908 0.00363**  
Riparian -0.7804 0.3593 -2.172 0.02986* 

PNB4 Riparian/ Bottomland -2.0728 0.2511 -8.255 < 2e-16*** 

(PS site) Sandy Prairie 1.1382 0.2993 3.803 0.000143***  
Shinnery Shrubland 1.2465 0.3586 3.476 0.000509*** 

SNB3 Grassland/ Prairie -1.5071 0.2613 -5.768 8.01E-09*** 

(SS site) Riparian/ Bottomland 0.1057 0.3076 0.344 0.73104  
Juniper/ Mesquite 
Shrubland 1.0146 0.3157 3.214 0.00131*** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 

No significant differences in metric values among landcover types were found at James Collins or Sandy 
Sanders WMAs (Table 20; Fig. 1). However, both species richness and Shannon diversity were 

significantly different among landcover types at Packsaddle, with riparian/bottomland exhibiting 
significantly lower metric values (Table 20). Overall, Packsaddle WMA had more significantly higher 
species richness and Shannon diversity than did James Collins and Sandy Sanders (Table 21). 

 
  



Table 18. Model predictions for each habitat type based on best respective GLMM. 

Site Habitat Type 
N individuals 

per station 
N individuals per transect 

(rounded to integer) 

James Collins  Grassland 0.452 13 

WMA Dry Oak Woodland 0.107 3  
Oak-Pine Forest 0.136 4  
Riparian 0.207 6 

Packsaddle WMA Riparian/ Bottomland 0.126 4  
Sandy Prairie 0.393 12  
Shinnery Shrubland 0.438 13 

Sandy Sanders Grassland/ Prairie 0.222 7 

WMA Riparian/ Bottomland 0.246 7  
Juniper/ Mesquite 
Shrubland 

0.611 18 

 

 
Table 19: Negative binomial GLMM output for describing the effect of study site on small mammal 

abundances, with transect ID and average minimum temperature as a random effect (model intercept is 
shown parenthetically). Predicted abundances are also shown for each respective study site.  

Coefficient Estimate Std. Error z value Pr(>|z|) Predicted 
abundance 

(Site: JC) -1.38195 0.205539 -6.724 1.77E-11* 0.2275 

Site: PS 0.002979 0.303983 0.01 0.992 0.2508 

Site: SS 0.242843 0.295018 0.823 0.41 0.3384 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 
Table 21: Analysis of variance tables for linear models describing the relationship between habitat types 

within each study site and community metrics (species richness and Shannon diversity).  

Site Metric DF Sum Sq Mean Sq F value Pr(>F) 

JC diversity 3 0.08527 0.028422 0.2652 0.8498  
richness 3 1.4185 0.47284 0.5502 0.6531 

PS diversity 2 3.5472 1.77361 17.935 <0.0001***  
richness 2 25 12.5000 11.413 <0.0004*** 

SS diversity 2 0.46131 0.23065 1.7225 0.2029  
richness 2 2.3333 1.16667 1.3901 0.2711 

 

  



Table 21. Outputs from linear models describing the relationship between study sites and community 
metrics (Shannon diversity, abundance, and species richness). Model intercepts are shown 

parenthetically. 

Metric Coefficient Estimate Std. Error z value Pr(>|z|) 

Shannon 

(Site: PS) 0.56567 0.08139 6.95 1.37E-09*** 

Site: SS -0.21944 0.11511 -1.906 0.0606. 

Site: JC -0.22803 0.11186 -2.038 0.0452* 

Abundance 

(Site: PS) 10.4583 1.7629 5.933 9.55E-08*** 

Site: SS 1.0417 2.4931 0.418 0.677 

Site: JC -0.6435 2.4228 -0.266 0.791 

Richness 

(Site: PS) 2.5 0.2271 11.007 <2e-16*** 

Site: SS -0.7083 0.3212 -2.205 0.0306* 

Site: JC -0.7593 0.3122 -2.432 0.0175* 

 
 

 
Figure 21. Model outputs from linear models, showing species richness (A, C, E) and Shannon diversity 

(B, D, F) values across respective habitat types for JC (A, B), PS (C, D), and SS (E, F). Significant 
differences in community metric values between study sites are denoted with asterisks. 

 

 

  



DISCUSSION 

Objective 1 

The occupancy study had high volunteer participation, with an average of 21 volunteers per year. The 
advent of the pandemic in 2020 complicated recruitment for the 2020/21 field season, with fewer 

students participating. Because of this, we supplied more cubbies and equipment per volunteer for this 
season, which meant increased responsibility for those volunteers, but this did not seem to have affected 
results substantially. The interest generated in the project by visiting Oklahoma universities and 

recruiting volunteers was substantial, indicating the feasibility of using wildlife student volunteers as 
citizen-scientists for large-scale research projects, given the right tools.  

 
In terms of hair-snare cubby performance, the snag rates for obtaining mammalian hair were high. 
However, the main issue was identifying these hairs to species. Morphologically, identification 

consensuses were comparatively rare, with many hair samples being identified as different species by 
different technicians. When compared to genetics results, we showed that the accuracy of these species 

identifications were low. It may be the case that morphological identification methods are not suitable 
for inexperienced identifiers, who rely on only dichotomous keys and reference guides, and may only be 
useful to professionals with years of experience working with hair samples (e.g. museum specimens). In 

addition, the fact that the study objectives were known by technicians (i.e. a bobcat study) may have 
biased results, resulting in far more bobcat identifications than would be expected, leading to many false 

positive bobcat detections. 
 
In terms of the genetic analyses of occupancy-study hair samples, amplification rates were low (30%), 

with bobcats only accounting for 25% of genetic identifications. By-catches were very common, 
particularly opossums (23%), which may particularly be attracted to the food-gland scent lure we used 

for hair-snare cubbies. Other common by-catch species were domestic animals (38%), such as cattle and 
dogs. These high rates of domestic species may be a result of increased placement upon private lands, 
including ranches and suburban areas. Our hair-snare cubby results are contrasted by their use in West 

Virginia (Rounsville, 2018), which saw 62% of hair samples obtained suitable for genetic analysis, 61% 
of bobcat hairs successfully genotyped, and an overall bobcat trapping rate of 0.9/100 trapping nights. 

However, our results more closely matched the success rates of other bobcat hair-snare studies (Long et 
al. 2007, García-Alaníz et al. 2010, White 2010). 
 

Occupancy modelling efforts were weakened by insufficient, high-quality data. For occupancy models 
to work best, there needs to be sufficient heterogeneity among bobcat presence/absence to detect 

patterns of occupancies. It is likely the case that we did not have enough presence/absence data, nor 
enough deployment locations and replications within representative habitats of Oklahoma, to accurately 
predict bobcat occupancy at the state-wide scale. It is also possible that we cannot accurately account for 

the large variation in cubby deployments made by volunteers, including inconsistent deployment 
durations and proximities, in order to account for variation in detection probability. These issues resulted 

in poor model fit to the data, both in the occupancy models and GLMs. However, theses analyses may 
provide a heavily caveated insight into the sort of relationship bobcats have with land cover types in 
Oklahoma, including an affinity for agricultural and suburban land, but an aversion to evergreen forests 

and high development areas. More (and higher quality) data is needed to explore this in more detail. 
 

  



Objective 2 
Similar to hair-snare cubbies used in the occupancy study, cubbies deployed on WMAs saw good snag 

rates for mammalian hair, but the number of hairs we could identify to species was small. We were able 
to identify only 39 hair samples to species using mtDNA, and a further 10 by genotyping using bobcat 

primers (total = 18.35% of hair samples). Bobcats accounted for <30% of mtDNA-identified hairs, 
whilst, similar to the occupancy study, opossums were the most common by-catch species. Despite their 
placement on WMAs, domestic animals still accounted for >20% of IDs, most likely from ranch cattle 

and hunting dogs. Due to the difficulties genetically analyzing bobcat hair, we used camera trap data to 
estimate bobcat densities on the WMAs. Camera traps outperformed hair-snare cubbies, not only with 

increased detection rate of bobcats, but also increasing the types of data we could obtain (density 
estimates, activity patterns, sympatric species data). For species with distinct pelage pat terns, such as 
bobcats, camera traps may be far more efficient for any capture-recapture analyses in which individuals 

are identified. In addition, in contrast to hair-snare cubbies used in West Virginia (Rounsville et al. 
2022), we had a high number of recaptures (Table 10).  

 
Density estimates showed bobcats were more densely distributed at our eastern study site (James Collins 
WMA), which is characterized by oak-hickory-pine woodland. This density is higher than previous 

estimates in southeastern Oklahoma (Rolley 1983; 0.01/km2) and western Arkansas (Rucker et al. 1989; 
0.10/km2), but similar to those found in eastern Texas (Symmank et al. 2008 = 0.29 - 0.58/km2; Lombardi 

et al. 2017 = 0.48/km2), and previous estimates from Illinois (Jacques et al. 2019 = 0.31/km2). This is 
contrasted by estimated densities at Sandy Sanders WMA, with as few as 0.02 bobcat/km2. This aligns 
with previous research within the Texas Panhandle (Thurmond 2014), with estimated home ranges sizes 

as large as 70 - 407km2 for males and 55 – 204km2 for females. Packsaddle WMA showed higher 
bobcat density estimates than Sandy Sanders WMA, aligning closely with more recent estimates from 

Illinois (Jacques et al. 2019 = 0.14/km2) and Northern Texas (Thornton and Pekins 2015 = 0.13/km2). In 
relation to the small mammal communities, we quantified at these study sites, increased bobcat density 
at Packsaddle WMA compared to Sandy Sanders WMA may be due to the higher small mammal 

diversity and species richness present at the study site. Whilst Sandy Sanders WMA had higher small 
mammal abundances, 95% were smaller-bodied rodents (Peromyscus spp., Reithrodontomys spp., and 

Perognathus spp.), whilst Packsaddle WMA had more medium and large rodents, including grasshopper 
mice, ground squirrels, and kangaroo rats. Although Packsaddle’s small mammal diversity and species 
richness was higher than James Collins, and James Collins had the lowest predicted abundances of small 

mammals, the James Collins study site had an abundance of gray and fox squirrels, which may make up 
a considerable portion of bobcat diet (Fritts and Sealander 1978, Rolley and Warde 1985). 

 
Additional Data 
Throughout the hair-snare and small mammal trapping field seasons of 2020 and 2021, we collected 

>240 mesocarnivore scats using an incidental collection approach. However, this method increased the 
proportion of scats collected that were old, and thus had highly degraded DNA, making them unsuitable 

for genetic analyses. However, our low success rate at amplifying DNA from scats is surprising, 
especially considering our ethanol preservation method in the 2021 collection season. Perhaps given 
more time to refine the genetic protocol (hair samples were prioritized above scats during laboratory 

work) we may have been able to amplify a larger proportion of samples. Any subsequent research using 
bobcat scats in Oklahoma, may benefit from the use of scat detection dogs. Studies have found that scat 

detection dogs increase genetic success, proving far more cost-effective than hair-snares (Harrison 2012, 



Long et al. 2007, Ruell and Crooks 2007, Adams 2009, White 2010) and sometimes more than camera traps 
(Long et al. 2007, Harrison 2012). 

 
Activity pattern analysis showed both bobcats and coyotes were more diurnal at James Collins WMA 

compared to western study sites. This, as with the small mammal findings, may suggest bobcats may 
supplement their diet with squirrels (as well as other diurnal prey) in these areas. It may also be a 
response to the increased vegetation cover present there, allowing bobcats to be more active during the 

day without being exposed. Bobcats and coyotes overlap substantially in their diel activity patterns, 
suggesting temporal partitioning of niche is not the primary source of niche segregation among the two 

mesocarnivore species. There appears to be considerable activity period differences in both species on a 
west-east axis; some temporal and dietary behaviors may result in differing degrees in niche overlap 
between bobcats and coyotes. Coyote activity overlapped greatly with rabbits at PS, suggesting this may 

be a common source of prey for coyotes in the study region. Bobcat activity was largely asynchronous 
with the activity patterns of rabbits, particularly at James Collins WMA. 

 

MANAGEMENT RECOMMENDATIONS 

 

Using a new hair-snare method developed for bobcats in West Virginia (Rounsville, 2018), we tested its 
use in Oklahoma to 1) monitor bobcat populations state-wide and 2) estimate bobcat densities on 3 

WMAs representing 3 different ecoregions of Oklahoma. The hair-snare cubbies were successful in 
collecting mammal hair from a wide variety of locations throughout the state, and generated enthusiasm 
for wildlife research by involving undergraduate students from a large number of Oklahoma institutions. 

However, the accuracy of identifying hairs to species by technicians in the OSU lab, when tested against 
genetic identification, was not high enough to use as a stand-alone monitoring technique. Perhaps with a 

highly trained technician from a forensics or museum laboratory, the method would be more reliable. 
Combining both conservative morphological and genetic identifications improved our ability to use 
occupancy modeling at the state-wide scale and develop probability of use maps for the state, but the 

standard error of the occupancy predictions in the southeast in a few key areas (southeast and a swath of 
west-central Oklahoma) made predictions in those areas unreliable. Using more targeted placement of 

cubbies across the state would improve this method for monitoring, however, the low success rate of 
morphological and genetic identification of bobcats indicates that occupancy modeling using camera-
trap methods would be a more promising monitoring method. Developing and advertising a platform on 

which the general public could submit trail camera photos of bobcats, supplemented with camera 
stations established by agency personnel could be used to gather presence/absence data for occupancy 

modeling statewide. 
 
Because of the difficulty of using genetic methods with bobcats, particularly bobcat hair, a situation 

confirmed by other geneticists recently, we resorted to using data from our camera traps and individual 
identification based on unique natural markings to estimate bobcat density on Sandy Sanders, 

Packsaddle, and James Collins WMAs. This method would work well for targeted population/density 
estimates, but in particularly sparse areas, such as Sandy Sanders WMA, a greater number of cameras 
should be used. 
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APPENDICES 

 

Appendix I. Landcover types of Sandy Sanders, Packsaddle, and James Collins WMAs reclassified from 
Diamond and Elliot (2015). 

 
Sandy Sanders WMA 
 

  Landcover Type for this 

Project 

Vegetation Classification (OKECOS) 

Juniper/ Mesquite 
Shrubland 

Canyon: Deciduous Shrubland 

Canyon: Gyp Deciduous Shrubland 

Canyon: Gyp Juniper Shrubland 

Canyon: Gyp Mesquite Shrubland 

Canyon: Juniper Shrubland 

High Plains: Mesquite Shrubland 

High Plains: Sandy Deciduous Shrubland 

Prairie/Grassland 

Canyon: Grassland 

Canyon: Gyp Grassland 

Central Mixedgrass: Prairie/Pasture 

Central Mixedgrass: Sandy Prairie/Pasture 

Riparian/Bottomland 

Eastern Great Plains: Herbaceous Wetland 

High Plains: Bottomland Barrens 

High Plains: Bottomland Deciduous Shrubland 

High Plains: Bottomland Eastern Redcedar Woodland and 
Shrubland 

High Plains: Bottomland Hardwood Forest 

High Plains: Bottomland Herbaceous Wetland 

High Plains: Depression Herbaceous Wetland 

High Plains: Riparian Barrens 

High Plains: Riparian Deciduous Shrubland 

High Plains: Riparian Eastern Redcedar Woodland and 

Shrubland 

High Plains: Riparian Hardwood Woodland 

High Plains: Riparian Herbaceous Wetland 

High Plains: Riparian Mixed Hardwood - Eastern Redcedar 
Woodland 

Ruderal Deciduous 
Shrubland 

Ruderal Deciduous Shrubland and Young Woodland 

Ruderal Deciduous Woodland 

Ruderal Eastern Redcedar Woodland and Shrubland 

Ruderal Mesquite Shrubland 

Ruderal Mixed Deciduous - Eastern Redcedar Woodland 

Ruderal Plains Shrubland 



Packsaddle WMA 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

James Collins WMA 
 

Landcover Type for this 

Project 

Vegetation Classification (OKECOS) 

Oak – Pine Forest 

Osark-Ouachita: Dry Mixed Oak – Evergreen 
Woodland 

Osark-Ouachita: Dry Oak Woodland 

Osark-Ouachita: Dry Oak Woodland Young 

Regrowth 

Osark-Ouachita: Dry-Mesic Mixed Oak – Evergreen 
Forest 

Osark-Ouachita: Dry-Mesic Oak Woodland Young 

Regrowth 

Osark-Ouachita: Shortleaf Pine – Oak Forest 

Bottomland/ Riparian 

Osark-Ouachita: Riparian Deciduous Shrubland and 
Young Woodland 

Osark-Ouachita: Riparian Evergreen Woodland and 

Shrubland 

Osark-Ouachita: Riparian Hardwood Wetland 

Landcover Type for this 
Project 

Vegetation Classification (OKECOS) 

Riparian/Bottomland 

Eastern Great Plains: Herbaceous Wetland 

High Plains: Bottomland Deciduous Shrubland 

High Plains: Bottomland Hardwood Forest 

High Plains: Bottomland Herbaceous Wetland 

High Plains: Riparian Deciduous Shrubland 

High Plains: Riparian Hardwood Woodland 

Ruderal Deciduous Shrubland 

Ruderal Deciduous Shrubland and Young Woodland 

Ruderal Deciduous Woodland 

Ruderal Eastern Redcedar Woodland and Shrubland 

Ruderal Mixed Deciduous - Eastern Redcedar Woodland 

Ruderal Plains Shrubland 

Sandy Prairie/Grassland 

Canyon: Grassland 

Central Mixedgrass: Prairie/Pasture 

Central Mixedgrass: Sandy Prairie/Pasture 

High Plains: Sand Prairie 

Shinnery Shrubland 

Canyon: Deciduous Shrubland 

Canyon: Juniper Shrubland 

High Plains: Sandhill Shinnery Shrubland 

High Plains: Sandhill Shrubland 

High Plains: Sandy Deciduous Shrubland 



Osark-Ouachita: Riparian herbaceous Wetland 

Osark-Ouachita: Riparian Mixed Evergreen – 
Hardwood Wetland 

South Central Interior: Bottomland Barrens 

South Central Interior: Bottomland Eastern Redcedar 

Woodland 

South Central Interior: Bottomland Hardwood Forest 

South Central Interior: Bottomland Mixed Evergreen 
– Hardwood 

South Central Interior: Bottomland Shrubland and 

Young Woodland 

South Central Interior: Riparian Eastern  Redcedar 
Woodland and Shrubland 

South Central Interior: Riparian Hardwood 

Woodland 

South Central Interior: Riparian Mixed Evergreen – 
Hardwood Forest 

South Central Interior: Riparian Shrubland and 

Young Woodland 

Ruderal Deciduous Woodland 

Ruderal Deciduous Shrubland and Young Woodland 

Ruderal Deciduous Woodland 

Ruderal Eastern Redcedar Woodland and Shrubland 

Ruderal Mixed Deciduous – Eastern Redcedar 
Woodland 

 

Appendix II. Thermal profiles used in PCR for 5 primers. 

Primer Initial Thermal Profile  

FurND1 95°C 5min 35 cycles of; 95°C 30sec, 53°C 30 sec, 72°C 2min. 
Followed by 72°C 5min 

BOBCATSPID 94°C 5min 35 cycles of; 94°C 1min, 50°C 1min, 72°C 1min20. 

Followed by 72°C 10min 

BC50 94°C 2min 35 cycles of; 94°C 1min, 50°C 1min, 72°C 1min. 
Followed by 72°C 7min 

BOBCATNEW22 94°C 5min 30 cycles of; 94°C 30sec, 50°C 20sec, 72°C 1min. 

Followed by 72°C 5min 

CYTB52 94°C 2min 40 cycles of; 92°C 15sec, 52°C 1min, 72°C 1min10. 
Followed by 72°C 10min 

 
  



Appendix III. Genotyping results for hair and scat samples, showing peak heights at each genetic locus. 
Question marks indicate uncertainty.   

locus 

Sample ID Sample 

Type 

BCE5T  BCE5T  FCA77  FCA77  FCA90  FCA90  BC1AT  BC1AT  FCA96  FCA96 

JC007 

4A98 20 

hair sub-

sample 

  
139 139 

  
318 318 

  

JC007 

4A99 20 

hair sub-

sample 

  
139 139 

  
342 349 

  

JC015 B1? 

19 

hair sub-

sample 
268 268 139 139 101 101 340? 340? 

  

JC021 3A 

20 

hair sub-

sample 
296 296 

    
324 324 177 177 

JC021 3B 

20 

hair sub-

sample 
289 289? 114 114? 

  
324? 349? 185 200 

JC031 5A 
21 

hair sub-
sample 

  
142 142 

      

JC034 2B 

20 

hair sub-

sample 
273 276 142 142 

  
302 318 182 182 

JC034 2C 

20 

hair sub-

sample 
273 276 142 142 106 109 302 318 176 184 

JC034 2D 

20 

hair sub-

sample 
273 276 142 142 

  
302 310 190 190 

PS041 1A1 
20 

hair sub-
sample 

  
141 141 

  
306 306 180 194 

PS043 2B2 

21 

hair sub-

sample 

    
98 106 

    

PS043 2D 

21 

hair sub-

sample 

  
142 142 98 106 306 306 

  

PS049 1A 

21 

hair sub-

sample 

  
140 142 

      

PS059 4B8 
20 

hair sub-
sample 

    
106? 110? 

    

PS059 5A1 

20 

hair sub-

sample 

    
106? 106? 

    

PS064 2A 

21 

hair sub-

sample 
283 283 

  
102 106? 

  
182 182 

PS064 2B 

21 

hair sub-

sample 
283 283 

  
102 106 

  
182 182 

PS067 1A 
21 

hair sub-
sample 

  
139 139 

  
310 310 190 190 

PS067 4B2 

20 

hair sub-

sample 
257 257 139 141 

    
180 180 

PS069 1A 

21 

hair sub-

sample 

  
137 141 101 101 302 310 

  

PS069 1B 

21 

hair sub-

sample 

  
137 141 107 107 

  
186 192 

PS072 2D2 

21 

hair sub-

sample 

  
128 139 101 103 

    

SS091 3A 

21 

hair sub-

sample 

  
142 142 

      

SS096 1A 

19 

hair sub-

sample 

  
137 139 101 101 

  
190 194 

SS111 1A1 
20 

hair sub-
sample 

273 273 130 130 
  

306 306 
  

SS111 

1A1P 20 

hair sub-

sample 

  
142 137 

      

SS111 4A 

20 

hair sub-

sample 

  
142 142 

      



SS111 6A1 

21 

hair sub-

sample 

  
142 142 108 108 

  
182 198? 

SS116 5A 

19 

hair sub-

sample 
265 265 139 146 

    
166 166 

SS120 4D2 

20 

hair sub-

sample 

  
134 144 106? 106? 318 318 182 182 

SS120 

4D2(2) 20 

hair sub-

sample 
257 268 134 144 106 106 318 318 182 182 

SS120 6A1 
21 

hair sub-
sample 

  
144 144 

    
182 182 

SS120 6B1 

21 

hair sub-

sample 

    
104 104 

    

MJ109 scat sub-

sample 

  
139 144 103 103 

  
188? 194? 

MJ125 scat sub-

sample 
261 273 

        

MJ207 scat sub-
sample 

  
139 141 99 101? 

  
182? 190? 

MS208 scat sub-

sample 

  
136 141 

  
300 300 

  

MS214 scat sub-

sample 

  
138 141 107 107 291 331 285? 301 

 

  



Appendix IV. Number of camera trap observations of wildlife species from James Collins, Packsaddle 
and Sandy Sanders Wildlife Management Areas in Oklahoma, during 2019, 2020 and 2021 field 

seasons. White-tailed deer and avian species observations were not quantified, except potential bobcat 
prey species; quail, roadrunner and wild turkey. Species/groups are ordered by total detections over all 

three field seasons (N = 1710 observations). 
  

Species/Group Common Name 2019 2020 2021 Total 

Procyon lotor Raccoon 64 111 136 311 
Sylvilagus spp. Rabbit 119 74 91 284 

Canis latrans Coyote 77 66 115 258 
Rodentia Rodent 55 74 29 158 
Mephitis mephitis Striped Skunk 46 60 40 146 

Lynx rufus Bobcat 43 41 48 134 
Sciurus spp. Squirrel 19 60 21 100 

Sus scrofa Feral Pig 28 28 15 71 
Didelphis virginiana Opossum 26 22 16 64 
Dasypus novemcinctus Armadillo 15 27 21 63 

Erethizon dorsatum Porcupine 5 9 37 51 

Lepus californicus 
Black-tailed 

Jackrabbit 
0 0 37 37 

Geococcyx californianus Roadrunner 9 0 5 14 
Urocyon cinereoargenteus Gray Fox 6 0 0 6 

Meleagris gallopavo Wild Turkey 0 2 3 5 
Taxidea taxus American Badger 1 2 2 5 

Colinus virginianus Bobwhite Quail 1 1 0 2 
Spilogale putorius Spotted Skunk 0 0 1 1 

 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 



Appendix V. Number of rodent individuals captured at different habitat types within each study site 2020-2021. Rodents are grouped 
by classifications and listed alphabetically. 

species 

classification 

James Collins WMA Packsaddle WMA Sandy Sanders WMA 

grassland mixed 
ruderal 

oak 
wood 

pine 
forest 

riparian riparian sand 
prairie 

shrubland grassland riparian shrubland 

deer mouse 47 13 33 19 53 25 53 89 42 63 132 

grasshopper 

mouse 

      
20 16 

   

ground 

squirrel 

      
7 3 

   

harvest mouse 89 5 3 1 5 4 14 3 8 
  

hispid cotton 
rat 

18 
  

8 2 1 1 
  

4 
 

hispid pocket 
mouse 

      
3 2 2 

  

kangaroo rat 
      

7 2 
   

marsh rice rat 1 
          

m. jumping 

mouse 

       
1 

   

shrew 
  

1 2 
    

1 
  

small pocket 

mouse 

        
5 1 11 

wood rat 
    

5 
    

3 4 

 

 


